
On qualitative properties of solutions to quasilinear parabolic
equations admitting degenerations at infinity
A. B. Muravnik^{ab} ^{a} People's Frendship University, MiklukhoMaklaya str. 6, 117198, Moscow, Russia
^{b} JSC “Concern “Sozvezdie”,
Plekhanovskaya str. 14,
394018, Voronezh, Russia
Abstract:
We consider the Cauchy problem for a
quasilinear parabolic equations
$\rho(x)u_t=\Delta u + g(u)\nabla u^2$, where the positive coefficient $\rho$ degenerates at infinity, while the coefficient $g$ either is a continuous function or have singularities of at most first power. These nonlinearities called
Kardar–Parisi–Zhang nonlinearities (or KPZnonlinearities) arise in various applications (in particular, in modelling directed polymer and interface growth). Also, they are of an independent theoretical interest because they contain the second powers of the first derivatives: this is the greatest exponent such that Bernsteintype conditions for the corresponding elliptic problem ensure apriori $L_\infty$estimates of first order derivatives of the solution via the $L_\infty$estimate of the solution itself. Earlier, the asymptotic properties of solutions to parabolic equations with nonlinearities of the specified kind were studied only for the case of uniformly parabolic linear parts. Once the coefficient $\rho$ degenerates (at least at infinity), the nature of the problem changes qualitatively, which is confirmed by the presented study of qualitative properties of (classical) solutions to the specified Cauchy problem. We find conditions for the coefficient $\rho$ and the initial function guaranteeing the following behavior of the specified solutions: there exists a (limit) Lipschitz function $A(t)$ such that, for any positive $t$, the generalized spherical mean of the solution tends to the specified Lipschitz function as the radius of the sphere tends to infinity. The generalized spherical mean is constructed as follows. First, we apply a monotone function to a solution; this monotone function is determined only by the coefficient at the nonlinearity (both in regular and singular cases). Then we compute the mean over the $(n1)$dimensional sphere centered at the origin (in the linear case, this mean naturally is reduced to a classical spherical mean). To construct the specified monotone function, we use the Bitsadze method allowing us to express solutions of the studied quasilinear equations via solutions of semilinear equations.
Keywords:
parabolic equations, KPZnonlinearities, longtime behavior, degeneration at infinity.
Funding Agency 
Grant Number 
Ministry of Education and Science of the Russian Federation 
ÍØ4479.2014.1

Russian Foundation for Basic Research 
170100401_à 
The work is supported by the Ministry of Education and Science of Russia in the framework of the Program
of Increasing competitiveness of RUDN University “5100” among leading world scientific and educational
centers for 2016–2020 and by a grant of the President of Russian Federation NSh4479.2014.1 and RFBR grant
no. 170100401. 
Full text:
PDF file (408 kB)
References:
PDF file
HTML file
English version:
Ufa Mathematical Journal, 2018, 10:4, 77–84 (PDF, 350 kB); https://doi.org/10.13108/201810477
Bibliographic databases:
UDC:
517.956
MSC: 35K59, 35K65 Received: 21.07.2017
Citation:
A. B. Muravnik, “On qualitative properties of solutions to quasilinear parabolic
equations admitting degenerations at infinity”, Ufimsk. Mat. Zh., 10:4 (2018), 77–84; Ufa Math. J., 10:4 (2018), 77–84
Citation in format AMSBIB
\Bibitem{Mur18}
\by A.~B.~Muravnik
\paper On qualitative properties of solutions to quasilinear parabolic
equations admitting degenerations at infinity
\jour Ufimsk. Mat. Zh.
\yr 2018
\vol 10
\issue 4
\pages 7784
\mathnet{http://mi.mathnet.ru/ufa449}
\transl
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 4
\pages 7784
\crossref{https://doi.org/10.13108/201810477}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000457367000007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2s2.085060521708}
Linking options:
http://mi.mathnet.ru/eng/ufa449 http://mi.mathnet.ru/eng/ufa/v10/i4/p77
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles

Number of views: 
This page:  61  Full text:  30  References:  10 
