RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2019, Volume 11, Issue 1, Pages 19–25 (Mi ufa457)  

On an interpolation problem in the class of functions of exponential type in a half-plane

B. V. Vynnyt'skyi, V. L. Sharan, I. B. Sheparovych

Drohobych state pedagogical university named after Ivan Franko, Stryiskaya str., 3, 82100, Drohobych, Ukraine

Abstract: Solvability conditions for interpolation problem $f(n)=d_{n},\quad n \in {\mathbb{N}} $ in the class of entire functions satisfying the condition $ | {f(z)} |\le e^{\pi | {\mathrm{Im}ż |+o( {| z |} )}, z\to \infty$ are well known. In the presented paper we study the interpolation problem $f(\lambda_ {n}) = d_ {n} $ in the class of exponential type functions in the half-plane. We find sufficient solvability conditions for the considerate problem. In particular, a sufficient part of Carleson's interpolation theorem is generalized and an analogue of a classic interpolation condition is found in the form
$$\sum\limits_{j = k}^{\infty} \mathrm{Re} ( - \xi _{j} \frac{\lambda _{k} ^{2} - 1}{\lambda _{k} + \overline {\lambda_j}} ) \le c_{3}, \qquad \xi _{j} : = \frac{\mathrm{Re} \lambda_j} {1 + | \lambda_j|^{2}}.$$
The necessity of sufficient conditions is also discussed. The results are applied to studying a problem on splitting and searching an analogue of the identity $2\cos z=\exp(-iz)+\exp(iz)$ for each function of exponential type in the half-plane. We prove that each holomorphic in the right-hand half-plane function $f$ obeying the , estimate $| {f(z)} |\le O(\exp(\sigma| \mathrm{Im}ż|))$ can be represented in the form $f=f_1+f_2$ and the functions $f_1$ and $f_2$ holomorphic in the right-hand half-plane satisfy conditions
$$ | {f_1(z)} |\le O (\exp(| z|h_{-}(\varphi)))\quadand | {f_2(z)} |\le O(\exp(| z|h_{+}(\varphi))), $$
where $\sigma\in [0;+\infty)$, $z = re^{i\varphi}$,
$$h_{ +} (\varphi ) = \{ \begin{aligned} &\sigma {| {\sin \varphi} |}, && \varphi \in [0;\frac{\pi}{2}],
&0, &&\varphi \in [-\frac{\pi}{2};0], \end{aligned}. \qquad h_{ -} (\varphi ) = \{ \begin{aligned} &0, &&\varphi \in [0;\frac{\pi}{2}],
&\sigma {| {\sin \varphi} |}, && \varphi \in [ -\frac{\pi}{2};0]. \end{aligned}. $$
The paper uses methods works by L. Carleson, P. Jones, K. Kazaryan, K. Malyutin and other mathematicians.

Keywords: holomorphic functions of exponential type in the half-plane, interpolation, splitting of holomorphic functions.

Full text: PDF file (402 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2019, 11:1, 19–26 (PDF, 338 kB); https://doi.org/10.13108/2019-11-1-19

Bibliographic databases:

UDC: 517.5
MSC: 30E05, 30D15
Received: 01.06.2017

Citation: B. V. Vynnyt'skyi, V. L. Sharan, I. B. Sheparovych, “On an interpolation problem in the class of functions of exponential type in a half-plane”, Ufimsk. Mat. Zh., 11:1 (2019), 19–25; Ufa Math. J., 11:1 (2019), 19–26

Citation in format AMSBIB
\Bibitem{VinShaShe19}
\by B.~V.~Vynnyt'skyi, V.~L.~Sharan, I.~B.~Sheparovych
\paper On an interpolation problem in the class of functions of exponential type in a half-plane
\jour Ufimsk. Mat. Zh.
\yr 2019
\vol 11
\issue 1
\pages 19--25
\mathnet{http://mi.mathnet.ru/ufa457}
\transl
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 1
\pages 19--26
\crossref{https://doi.org/10.13108/2019-11-1-19}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000466964100002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066028430}


Linking options:
  • http://mi.mathnet.ru/eng/ufa457
  • http://mi.mathnet.ru/eng/ufa/v11/i1/p19

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • ”фимский математический журнал
    Number of views:
    This page:65
    Full text:40
    References:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020