RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2019, Volume 11, Issue 1, Pages 68–71 (Mi ufa461)  

On Bary–Stechkin theorem

A. I. Rubinshtein

National Research Nuclear University MEPhI, Kashirskoe road, 31, 115409, Moscow, Russia

Abstract: In the beginning of the past century, N.N. Luzin proved almost everywhere convergence of an improper integral representing the function $\bar f$ conjugated to a $2\pi$-periodic summable with a square function $f(x)$. A few years later I.I. Privalov proved a similar fact for a summable function. V.I. Smirnov showed that if $\bar f$ is summable, then its Fourier series is conjugate to the Fourier series for $f(x)$. It is easy to see that if $f(x)\in\mathrm{Lip} \alpha$, $0<\alpha<1$, then $\bar f(x)\in\mathrm{Lip} \alpha$. The Hilbert transformation for $f(x)$ differs from $\bar f(x)$ by a bounded function and has a simpler kernel. It is easy to show that the Hilbert transformation of $f(x)\in\mathrm{Lip} \alpha$, $0<\alpha<1$, also belongs to $\mathrm{Lip} \alpha$. In 1956 N.K. Bari and S.B. Stechkin found the necessary and sufficient condition on the modulus of continuity $f(x)$ for the function $\bar f(x)$ to have the same modulus of continuity. In 2016, the author introduced the concept of conjugate function as Hilbert transformation for functions defined on a dyadic group. In the present paper we show an analogue of the Bari–Stechkin (and Privalov) theorem fails that for a conjugated in this sense function.

Keywords: dyadic group, conjugate function, modulus of continuity, Bari–Stechkin theorem.

Full text: PDF file (323 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2019, 11:1, 70–74 (PDF, 293 kB); https://doi.org/10.13108/2019-11-1-70

Bibliographic databases:

UDC: 517.9
MSC: 42A50
Received: 18.08.2017

Citation: A. I. Rubinshtein, “On Bary–Stechkin theorem”, Ufimsk. Mat. Zh., 11:1 (2019), 68–71; Ufa Math. J., 11:1 (2019), 70–74

Citation in format AMSBIB
\Bibitem{Rub19}
\by A.~I.~Rubinshtein
\paper On Bary--Stechkin theorem
\jour Ufimsk. Mat. Zh.
\yr 2019
\vol 11
\issue 1
\pages 68--71
\mathnet{http://mi.mathnet.ru/ufa461}
\transl
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 1
\pages 70--74
\crossref{https://doi.org/10.13108/2019-11-1-70}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000466964100006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066054017}


Linking options:
  • http://mi.mathnet.ru/eng/ufa461
  • http://mi.mathnet.ru/eng/ufa/v11/i1/p68

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • ”фимский математический журнал
    Number of views:
    This page:40
    Full text:19
    References:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019