Ufimskii Matematicheskii Zhurnal
General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Ufimsk. Mat. Zh.:

Personal entry:
Save password
Forgotten password?

Ufimsk. Mat. Zh., 2019, Volume 11, Issue 3, Pages 10–29 (Mi ufa477)  

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotics of eigenvalues of infinite block matrices

I. N. Braeutigama, D. M. Polyakovb

a Fachhochschule Kiel, Grüner Kamp, 11, 24783, Osterrönfeld, Germany
b Southern Mathematical Institute of Vladikavkaz Scientific Center of RAS, Markus str. 22, 362027, Vladikavkaz, Russia

Abstract: The paper is devoted to determining the asymptotic behavior of eigenvalues, which is one of topical directions in studying operators generated by tridiagonal infinite block matrices in Hilbert spaces of infinite sequences with complex coordinates or, in other words, to discrete Sturm-Liouville operators. In the work we consider a class of non-self-adjoint operators with discrete spectrum being a sum of a self-adjoint operator serving as an unperturbed operator and a perturbation, which is an operator relatively compact with respect to the unperturbed operator. In order to study the asymptotic behavior of eigenvalues, in the paper we develop an adapted scheme of abstract method of similar operators. The main idea of this approach is that by means of the similarity operator, the studying of spectral properties of the original operator is reduced to studying the spectral properties of an operator of a simpler structure. Employing this scheme, we write out the formulae for the asymptotics of arithmetical means of the eigenvalues of the considered class of the operators. We note that such approach differs essentially from those employed before. The obtained general result is applied for determining eigenvalues of particular operators. Namely, we provide asymptotics for the eigenvalues of symmetric and non-symmetric tridiagonal infinite matrices in the scalar case, the asymptotics for arithmetical means of the eigenvalues of block matrices with power behavior of eigenvalues of unperturbed operator and generalized Jacobi matrices with various number of non-zero off-diagonals.

Keywords: infinite tridiagonal block matrices, Jacobi matrices, the method of similar operators, eigenvalues, spectrum.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-31-00205
German Academic Exchange Service (DAAD) 1.12791.2018/12.2
The work of the first author was financially supported by the Ministery of Education and Science of Russian Federation and DAAD (grant no. 1.12791.2018/12.2). The reported study of the second author was funded by RFBR according to the research project 18-31-00205.

Full text: PDF file (549 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2019, 11:3, 11–28 (PDF, 433 kB); https://doi.org/10.13108/2019-11-3-11

Bibliographic databases:

UDC: 517.984.48
MSC: 47A75, 47B25, 47B36
Received: 18.02.2019

Citation: I. N. Braeutigam, D. M. Polyakov, “Asymptotics of eigenvalues of infinite block matrices”, Ufimsk. Mat. Zh., 11:3 (2019), 10–29; Ufa Math. J., 11:3 (2019), 11–28

Citation in format AMSBIB
\by I.~N.~Braeutigam, D.~M.~Polyakov
\paper Asymptotics of eigenvalues of infinite block matrices
\jour Ufimsk. Mat. Zh.
\yr 2019
\vol 11
\issue 3
\pages 10--29
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 3
\pages 11--28

Linking options:
  • http://mi.mathnet.ru/eng/ufa477
  • http://mi.mathnet.ru/eng/ufa/v11/i3/p10

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Baskakov, V G. Garkavenko , M. Yu. Glazkova, N. B. Uskova, “On spectral properties of one class difference operators”, Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 1479, IOP Publishing Ltd, 2020, 012002  crossref  isi  scopus
    2. G. V. Garkavenko, N. B. Uskova, “Ob otsenkakh sobstvennykh znachenii beskonechnykh blochnykh trekhdiagonalnykh matrits”, Materialy mezhdunarodnoi konferentsii po matematicheskomu modelirovaniyu v prikladnykh naukakh “International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19”. Belgorod, 20–24 avgusta 2019 g., Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 195, VINITI RAN, M., 2021, 118–126  mathnet  crossref
  • Уфимский математический журнал
    Number of views:
    This page:110
    Full text:39

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021