RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufimsk. Mat. Zh., 2020, Volume 12, Issue 1, Pages 104–114 (Mi ufa506)  

Integration of equations of Kaup system kind with self-consistent source in class of periodic functions

A. B. Yakhshimuratova, B. A. Babajanovb

a Urgench Branch of Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Al-Khwarizmi street, 110, 220100, Urgench city, Uzbekistan
b Urgench State University, Hamid Alimjan street, 14, 220100, Urgench city, Uzbekistan

Abstract: In this paper, we consider the equations of Kaup system kind with a self-consistent source in the class of periodic functions. We discuss the complete integrability of the considered nonlinear system of equations, which is based on the transformation to the spectral data of an associated quadratic pencil of Sturm–Liouville equations with periodic coefficients. In particular, Dubrovin-type equations are derived for the time-evolution of the spectral data corresponding to the solutions of equations of Kaup system kind with self-consistent source in the class of periodic functions. Moreover, it is shown that spectrum of the quadratic pencil of Sturm–Liouville equations with periodic coefficients associated with considering nonlinear system does not depend on time. In a one-gap case, we write the explicit formulae for solutions of the problem under consideration expressed in terms of the Jacobi elliptic functions. We show that if $p_{0} (x)$ and $q_{0} (x)$ are real analytical functions, the lengths of the gaps corresponding to these coefficients decrease exponentially. The gaps corresponding to the coefficients $p(x,t)$ and $q(x,t)$ are same. This implies that the solutions of considered problem $p(x,t)$ and $q(x,t)$ are real analytical functions in $x$.

Keywords: equations of Kaup system kind, quadratic pencil of Sturm–Liouville equations, inverse spectral problem, trace formulas, periodical potential.

Funding Agency Grant Number
Keele University International Erasmus+Program KA106-2
The authors express their gratitude to Prof. Aknazar Khasanov (Samarkand State University, Uzbekistan) for discussion and valuable advice, as well as to the International Erasmus+Program KA106-2, Keele University, UK.


Full text: PDF file (430 kB)
References: PDF file   HTML file

English version:
Ufa Mathematical Journal, 2020, 12:1, 103–113 (PDF, 431 kB); https://doi.org/10.13108/2020-12-1-103

Bibliographic databases:

UDC: 517.957
MSC: 39A23, 35Q51, 34K13, 34K29
Received: 25.02.2019
Language:

Citation: A. B. Yakhshimuratov, B. A. Babajanov, “Integration of equations of Kaup system kind with self-consistent source in class of periodic functions”, Ufimsk. Mat. Zh., 12:1 (2020), 104–114; Ufa Math. J., 12:1 (2020), 103–113

Citation in format AMSBIB
\Bibitem{YakBab20}
\by A.~B.~Yakhshimuratov, B.~A.~Babajanov
\paper Integration of equations of Kaup system kind with self-consistent source in class of periodic functions
\jour Ufimsk. Mat. Zh.
\yr 2020
\vol 12
\issue 1
\pages 104--114
\mathnet{http://mi.mathnet.ru/ufa506}
\transl
\jour Ufa Math. J.
\yr 2020
\vol 12
\issue 1
\pages 103--113
\crossref{https://doi.org/10.13108/2020-12-1-103}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000526181300008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084251246}


Linking options:
  • http://mi.mathnet.ru/eng/ufa506
  • http://mi.mathnet.ru/eng/ufa/v12/i1/p104

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Уфимский математический журнал
    Number of views:
    This page:56
    Full text:8
    References:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020