RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


UFN, 2002, Volume 172, Number 1, Pages 31–66 (Mi ufn1972)  

This article is cited in 33 scientific papers (total in 33 papers)

REVIEWS OF TOPICAL PROBLEMS

Spatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics

A. B. Medvinskiia, S. V. Petrovskiib, I. A. Tikhonovaa, D. A. Tikhonova, B.-L. Lic, E. Venturinod, H. Malchowe, G. R. Ivanitskiia

a Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences
b P. P. Shirshov institute of Oceanology of RAS
c Department of Biology, University of New Mexico
d Dipartimento di Matematica, Politecnico di Torino
e Institute of Environmental Systems Research, University of Osnabrück

Abstract: The current turn-of-the-century period witnesses the intensive use of the bioproducts of the World Ocean while at the same time calling for precautions to preserve its ecological stability. This requires that biophysical processes in aquatic systems be comprehensively explored and new methods for monitoring their dynamics be developed. While aquatic and terrestrial ecosystems have much in common in terms of their mathematical description, there are essential differences between them. For example, the mobility of oceanic plankton is mainly controlled by diffusion processes, whereas terrestrial organisms naturally enough obey totally different laws. This paper is focused on the processes underlying the dynamics of spatially inhomogeneous plankton communities. We demonstrate that conceptual reaction-diffusion mathematical models are an appropriate tool for investigating both complex spatio-temporal plankton dynamics and the fractal properties of planktivorous fish school walks.

DOI: https://doi.org/10.3367/UFNr.0172.200201b.0031

Full text: PDF file (4956 kB)
Full text: http://www.ufn.ru/ru/articles/2002/1/b/
References: PDF file   HTML file

English version:
Physics–Uspekhi, 2002, 45:1, 27–57

Bibliographic databases:

PACS: 05.45.-a, 92.10.-c, 92.20.Rb
Received: March 26, 2001

Citation: A. B. Medvinskii, S. V. Petrovskii, I. A. Tikhonova, D. A. Tikhonov, B.-L. Li, E. Venturino, H. Malchow, G. R. Ivanitskii, “Spatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics”, UFN, 172:1 (2002), 31–66; Phys. Usp., 45:1 (2002), 27–57

Linking options:
  • http://mi.mathnet.ru/eng/ufn1972
  • http://mi.mathnet.ru/eng/ufn/v172/i1/p31

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ivanitsky G. Medvinsky A., “Learning and Selection Create New Information”, Biofizika, 47:6 (2002), 1140–1143  isi
    2. Tikhonova I., Li B., Malchow H., Medvinsky A., “The Impact of the Phytoplankton Growth Rate on Spatial and Temporal Dynamics of Plankton Communities in a Heterogeneous Environment”, Biofizika, 48:5 (2003), 891–899  isi
    3. Medvinsky A., Tikhonova I., Li B., Malchow H., “Interdependence of Plankton Spatial Patterns and Temporal Oscillations: Mathematical Simulation”, Biofizika, 48:1 (2003), 104–110  isi
    4. Martin A., “Phytoplankton Patchiness: the Role of Lateral Stirring and Mixing”, Prog. Oceanogr., 57:2 (2003), 125–174  crossref  adsnasa  isi
    5. Phys. Usp., 46:3 (2003), 259–291  mathnet  crossref  crossref  isi
    6. V. K. Vanag, “Waves and patterns in reaction–diffusion systems. Belousov–Zhabotinsky reaction in water-in-oil microemulsions”, Phys. Usp., 47:9 (2004), 923–941  mathnet  crossref  crossref  adsnasa  isi
    7. Yu. V. Bibik, S. P. Popov, D. A. Sarancha, “Numerical solution of the Bogoyavlenskii kinetic equation and the Lotka–Volterra system with diffusion”, Comput. Math. Math. Phys., 44:5 (2004), 856–867  mathnet  mathscinet  zmath
    8. Vysikailo P., “Electric Field Cumulation in Dissipative Structures of Gas-Discharge Plasmas”, J. Exp. Theor. Phys., 98:5 (2004), 936–944  crossref  adsnasa  isi  scopus
    9. Purtov P., “External Magnetic Fields as a Possible Cause of Stability Disturbance of Stationary States Far From Equilibrium in Reactions Involving Radical Pairs”, Appl. Magn. Reson., 26:1-2 (2004), 83–97  crossref  isi  scopus
    10. Grieco L., Tremblay L., Zambianchi E., “A Hybrid Approach to Transport Processes in the Gulf of Naples: an Application to Phytoplankton and Zooplankton Population Dynamics”, Cont. Shelf Res., 25:5-6 (2005), 711–728  crossref  adsnasa  isi  elib  scopus
    11. F. I. Vysikailo, M. I. Kuzmin, A. S. Tivkov, B. V. Chekalin, V. A. Chernov, “Fiziko-matematicheskie modeli kumulyatsii elektricheskogo polya v strukturakh gazorazryadnoi plazmy”, Matem. modelirovanie, 18:11 (2006), 104–116  mathnet  zmath
    12. Medvinsky A.B., “Population Dynamics: Limits of Predictability”, Biofizika, 51:6 (2006), 1033–1043  isi
    13. Medvinsky A.B., Gonik M.M., Li B.-L., Velkov V.V., Malchow H., “Invasion of Pests Resistant to Bt Toxins Can Lead to Inherent Non-Uniqueness in Genetically Modified Bt-Plant Dynamics: Mathematical Modeling”, J. Theor. Biol., 242:3 (2006), 539–546  crossref  mathscinet  isi  elib  scopus
    14. Medvinsky A., Kriksunov E., Bobyrev A., Burmensky V., Gonik M., Li B., Sterligova O., “A Conceptual Model of the Dynamics of the Syamozero Lake Community”, Biofizika, 51:2 (2006), 358–366  isi
    15. A. B. Medvinsky, “Population dynamics: Limits of predictability”, Biophysics, 51:6 (2006), 908  crossref  elib  scopus
    16. A. B. Medvinsky, E. A. Kriksunov, A. E. Bobyrev, V. A. Burmensky, M. M. Gonik, B. -L. Li, O. P. Sterligova, “A conceptual model of the dynamics of the Syamozero Lake community”, Biophysics, 51:2 (2006), 309  crossref  elib  scopus
    17. Medvinsky A.B., Gonik M.M., Li B.-L., Malchow H., “Beyond Bt Resistance of Pests in the Context of Population Dynamical Complexity”, Ecol. Complex., 4:4 (2007), 201–211  crossref  isi  elib  scopus
    18. Azovsky A.I., Burkosky I.V., Kolobov M.Yu., Kucheruk N.V., Saburova M.A., Sapozhnikov F.V., Udalov A.A., Chertoprud M.V., “Self-Similar Properties of the Spatial Structure of Intertidal Macro- and Microbenthic Communities”, Zhurnal Obshchei Biol., 68:3 (2007), 180–194  isi
    19. Ivanitsky G.R., Deev A.A., “Clock Synchronization in Various Modes of Regulation”, Biofizika, 52:5 (2007), 953–960  isi
    20. M. M. Gonik, A. E. Bobyrev, V. A. Burmensky, E. A. Kriksunov, B. -L. Li, H. Malchow, A. B. Medvinsky, O. P. Sterligova, “Invasion of an intermediate predator: Fish population dynamics in a mathematical model of a trophic chain (As applied to Syamozero lake)”, Biophysics, 52:4 (2007), 445  crossref  elib  scopus
    21. Roelke D.L., Eldridge P.M., “Mixing of Supersaturated Assemblages and the Precipitous Loss of Species”, Am. Nat., 171:2 (2008), 162–175  crossref  isi  scopus
    22. Ishikawa M., “Simulation Analyses of Behaviours of Spatially Extended Predator-Prey Systems with Random Fluctuations”, Adv. Electr. Comput. Eng., 8:1 (2008), 2–6  crossref  isi  elib  scopus
    23. Medvinsky A.B., Gonik M.M., Rusakov A.V., Malchow H., “From Bistability to Coupling-Induced Oscillations in a Two-Habitat Model for the Rotifer Population Dynamics”, Math. Model. Nat. Phenom., 3:3 (2008), 103–114  crossref  mathscinet  zmath  isi  elib  scopus
    24. T. K. Yuldashev, “O razreshimosti smeshannoi zadachi dlya odnoi sistemy differentsialnykh uravnenii v chastnykh proizvodnykh”, Trudy shestoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem (1–4 iyunya 2009 g.). Chast 3, Differentsialnye uravneniya i kraevye zadachi, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2009, 242–245  mathnet
    25. Kulagina T.P., Smirnov L.P., “The Influence of Reagent Association on the Kinetics of Liquid-Phase Chemical Reactions”, Russ. J. Phys. Chem. B, 3:6 (2009), 910–916  crossref  isi  elib  scopus
    26. A. B. Medvinsky, A. V. Rusakov, A. E. Bobyrev, V. A. Burmensky, A. E. Kriksunov, N. I. Nurieva, M. M. Gonik, “A conceptual mathematical model of the aquatic communities of lakes Naroch and Myastro (Belarus)”, BIOPHYSICS, 54:1 (2009), 90  crossref  elib  scopus
    27. Roelke D.L., Eldridge P.M., “Losers in the ‘Rock-Paper-Scissors’ Game: the Role of Non-Hierarchical Competition and Chaos as Biodiversity Sustaining Agents in Aquatic Systems”, Ecol. Model., 221:7 (2010), 1017–1027  crossref  isi  elib  scopus
    28. Krenke A.N., Chernyshev V.L., Kolomenskii D.S., “Modelirovanie dinamiki chislennosti planktonovykh soobschestv s pomoschyu modeli khischnik-zhertva s uchetom effekta ogranichennogo peremescheniya khischnika”, Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie, 2012, no. 04, 9–9  elib
    29. A. E. Bobyrev, V. A. Burmensky, E. A. Kriksunov, A. B. Medvinsky, N. I. Nurieva, “Long-period endogenous oscillations in fish population size: Mathematical modeling”, BIOPHYSICS, 58:2 (2013), 245  crossref  elib  scopus
    30. E. P. Zemskov, “Turing patterns and Newell – Whitehead – Segel amplitude equation”, Phys. Usp., 57:10 (2014), 1035–1037  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    31. E. E. Giricheva, “Modelirovanie sostoyaniya planktonnogo soobschestva s uchetom plotnostnozavisimoi smertnosti i prostranstvennoi aktivnosti zooplanktona”, Kompyuternye issledovaniya i modelirovanie, 8:3 (2016), 549–560  mathnet
    32. E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151  mathnet  crossref
    33. Giricheva E., “Spatiotemporal Dynamics of An Npz Model With Prey-Taxis and Intratrophic Predation”, Nonlinear Dyn., 95:2 (2019), 875–892  crossref  isi  scopus
  •   Physics-Uspekhi
    Number of views:
    This page:269
    Full text:78
    References:29
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019