RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


UFN, 2003, Volume 173, Number 3, Pages 317–321 (Mi ufn2119)  

This article is cited in 15 scientific papers (total in 16 papers)

FROM THE HISTORY OF PHYSICS

Mysteries of diffusion and labyrinths of destiny

O. G. Bakunin

Russian Research Centre "Kurchatov Institute", Nuclear Fusion Institute

Abstract: The role of prominent Soviet physicist B I Davydov in the development of our understanding of diffusion is briefly reviewed, with emphasis on the ideas he put forward in the 1930s: introducing additional partial derivatives into diffusion equations and extending diffusion concepts to phase space.

DOI: https://doi.org/10.3367/UFNr.0173.200303d.0317

Full text: PDF file (1091 kB)
Full text: http://www.ufn.ru/.../d
References: PDF file   HTML file

English version:
Physics–Uspekhi, 2003, 46:3, 309–313

Bibliographic databases:

Document Type: Article
PACS: 01.65.+g, 05.20.Dd, 52.25.Dg
Received: August 6, 2002

Citation: O. G. Bakunin, “Mysteries of diffusion and labyrinths of destiny”, UFN, 173:3 (2003), 317–321; Phys. Usp., 46:3 (2003), 309–313

Citation in format AMSBIB
\Bibitem{Bak03}
\by O.~G.~Bakunin
\paper Mysteries of diffusion and labyrinths of destiny
\jour UFN
\yr 2003
\vol 173
\issue 3
\pages 317--321
\mathnet{http://mi.mathnet.ru/ufn2119}
\crossref{https://doi.org/10.3367/UFNr.0173.200303d.0317}
\transl
\jour Phys. Usp.
\yr 2003
\vol 46
\issue 3
\pages 309--313
\crossref{https://doi.org/10.1070/PU2003v046n03ABEH001289}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000184112900004}


Linking options:
  • http://mi.mathnet.ru/eng/ufn2119
  • http://mi.mathnet.ru/eng/ufn/v173/i3/p317

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bakunin O.G., “Correlation effects and turbulent diffusion scalings”, Rep Progr Phys, 67:6 (2004), 965–1032  crossref  adsnasa  isi  scopus
    2. Borman V.D., Tronin V.N., Tronin I.V., Troyan V.I., “Transport of a two-component mixture in one-dimensional channels”, Zh Èksper Teoret Fiz, 98:1 (2004), 102–122  crossref  adsnasa  isi  scopus
    3. Bakunin O.G., “Percolation transport in random flows with drift and time-dependence effects”, Physica a-Statistical Mechanics and its Applications, 347 (2005), 289–300  crossref  adsnasa  isi  scopus
    4. Bakunin O.G., “Percolation models of turbulent transport and scaling estimates”, Chaos, Solitons & Fractals, 23:5 (2005), 1703–1731  crossref  zmath  adsnasa  isi  scopus
    5. Snodin A.P., Brandenburg A., Mee A.J., Shukurov A., “Simulating field-aligned diffusion of a cosmic ray gas”, Monthly Notices of the Royal Astronomical Society, 373:2 (2006), 643–652  crossref  adsnasa  isi  scopus
    6. Bakunin O.G., “The Corrsin conjecture and anomalous transport”, Journal of Plasma Physics, 72:5 (2006), 647–670  crossref  adsnasa  isi  scopus
    7. Ogasawara T., Toh S., “Model of turbulent relative dispersion: A self-similar telegraph equation”, J Phys Soc Japan, 75:8 (2006), 083401  crossref  adsnasa  isi  scopus
    8. E Bringuier, “The Maxwell–Stefan description of binary diffusion”, Eur. J. Phys, 34:5 (2013), 1103  crossref  zmath  isi  elib  scopus
    9. V. D. Borman, I. V. Tronin, V. N. Tronin, V. I. Troyan, O. S. Vasiliev, “Correlation Effects in Kinetics of One-Dimensional Atomic Systems”, Journal of Nanomaterials, 2013 (2013), 1  crossref  isi  scopus
    10. O. G. Bakunin, “Reconstruction of streamline topology, and percolation models of turbulent transport”, Phys. Usp., 56:3 (2013), 243–260  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    11. V. Zaburdaev, S. Denisov, J. Klafter, “Lévy walks”, Rev. Mod. Phys, 87:2 (2015), 483  crossref  mathscinet  isi  elib  scopus
    12. O. G. Bakunin, “Stochastic instability and turbulent transport. Characteristic scales, increments, and diffusion coefficients”, Phys. Usp., 58:3 (2015), 252–285  mathnet  crossref  crossref  adsnasa  isi  elib
    13. O. G. Bakunin, “Quasilinear theory of plasma turbulence. Origins, ideas, and evolution of the method”, Phys. Usp., 61:1 (2018), 52–83  mathnet  crossref  crossref  adsnasa  isi  elib
    14. Giusti A., “Dispersion Relations For the Time-Fractional Cattaneo-Maxwell Heat Equation”, J. Math. Phys., 59:1 (2018), 013506  crossref  mathscinet  zmath  isi  scopus
    15. Sobolev S.L., “On Hyperbolic Heat-Mass Transfer Equation”, Int. J. Heat Mass Transf., 122 (2018), 629–630  crossref  isi  scopus
    16. Bringuier E., “The Boltzmann Equation and Relaxation-Time Approximation For Electron Transport in Solids”, Eur. J. Phys., 40:2 (2019), 025103  crossref  isi  scopus
  • Успехи физических наук Physics-Uspekhi
    Number of views:
    This page:241
    Full text:98
    References:22
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019