RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



UFN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


UFN, 2011, Volume 181, Number 9, Pages 905–952 (Mi ufn2529)  

This article is cited in 27 scientific papers (total in 27 papers)

REVIEWS OF TOPICAL PROBLEMS

Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features

V. P. Budaevab, S. P. Savinb, L. M. Zelenyib

a Russian Research Centre "Kurchatov Institute"
b Space Research Institute, Russian Academy of Sciences

Abstract: A comparative analysis of the fundamental properties of fluctuations in the vicinity of boundaries in fusion plasmas and in plasmas of magnetospheric turbulent boundary layers (TBLs) shows the similarity of their basic statistical characteristics, including the scaling of the structure functions and mutifractal parameters. Important features observed include intermittent fluctuations and anomalous mass and momentum transport, due to sporadic plasma flow injections with large flow amplitudes occuring with a much higher probability than predicted for classical Gaussian diffusion. Turbulence in edge fusion plasmas and in TBLs exhibits general self-similarity in a wide range of scales extending to the dissipation scale. Experimental scalings obtained for plasma TBLs are compared with neutral fluid results, revealing the universal properties of developed turbulence. TBL scalings are described within the log-Poisson model, which takes quasi-one-dimensional dissipative structures into account. The time ($\tau$) dependence of the mean-square displacement $\langle \delta x^2 \rangle$ obtained from the experimental parameters of the log-Poisson distribution takes the form $\langle \delta x^2 \rangle \varpropto \tau^\alpha$ with $\alpha \approx$ 1.2 – 1.8 and indicates the presence of superdiffusion in the TBLs studied. Determining the nature of the generalized diffusion process from available regular data is a necessary step toward the quantitative description of TBL transport.

DOI: https://doi.org/10.3367/UFNr.0181.201109a.0905

Full text: PDF file (1618 kB)
Full text: http://www.ufn.ru/.../a
References: PDF file   HTML file

English version:
Physics–Uspekhi, 2011, 54:9, 875–918

Bibliographic databases:

Document Type: Article
PACS: 05.45.-a, 47.27.-i, 52.35.Ra
Received: July 2, 2010
Revised: February 22, 2011
Accepted: March 2, 2011

Citation: V. P. Budaev, S. P. Savin, L. M. Zelenyi, “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features”, UFN, 181:9 (2011), 905–952; Phys. Usp., 54:9 (2011), 875–918

Citation in format AMSBIB
\Bibitem{BudSavZel11}
\by V.~P.~Budaev, S.~P.~Savin, L.~M.~Zelenyi
\paper Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features
\jour UFN
\yr 2011
\vol 181
\issue 9
\pages 905--952
\mathnet{http://mi.mathnet.ru/ufn2529}
\crossref{https://doi.org/10.3367/UFNr.0181.201109a.0905}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011PhyU...54..875B}
\transl
\jour Phys. Usp.
\yr 2011
\vol 54
\issue 9
\pages 875--918
\crossref{https://doi.org/10.3367/UFNe.0181.201109a.0905}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298416500001}


Linking options:
  • http://mi.mathnet.ru/eng/ufn2529
  • http://mi.mathnet.ru/eng/ufn/v181/i9/p905

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. I. Gorchakov, A. V. Karpov, A. V. Sokolov, D. V. Buntov, I. A. Zlobin, “Experimental and theoretical study of the trajectories of saltating sand particles over desert areas”, Atmos. Ocean Opt., 25:6 (2012), 423  crossref  mathscinet  elib  scopus
    2. V. P. Budaev, S. A. Grashin, A. V. Karpov, S. V. Kraevskii, L. N. Khimchenko, “Long-range correlations in the structure of fractal films”, JETP Letters, 95:2 (2012), 78–84  mathnet  crossref  isi  elib  elib
    3. Lev Zelenyi, Anton Artemyev, “Mechanisms of Spontaneous Reconnection: From Magnetospheric to Fusion Plasma”, Space Sci. Rev., 178:2-4 (2013), 441–457  crossref  isi  scopus
    4. D. G. Vasil’kov, Yu. V. Kholnov, S. V. Shchepetov, “Long-range spatial correlations in the turbulent edge plasma of the L-2M stellarator”, Plasma Phys. Rep., 39:8 (2013), 615  crossref  adsnasa  isi  scopus
    5. L. V. Kozak, R. I. Kostyk, O. K. Cheremnykh, “Two spectra of turbulence of the sun”, Kinemat. Phys. Celest. Bodies, 29:2 (2013), 66  crossref  adsnasa  isi  elib  scopus
    6. O. G. Bakunin, “Reconstruction of streamline topology, and percolation models of turbulent transport”, Phys. Usp., 56:3 (2013), 243–260  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    7. S.V. Anisimov, N.M. Shikhova, “Intermittency of turbulent aeroelectric field”, Atmospheric Research, 135-136 (2014), 255–262  crossref  adsnasa  isi  scopus
    8. Fomin N.A., Meleeva O.V., “Tomographic Techniques of Multiscale Coherent Structures Reconstruction in Turbulent Flows. 1. Large Scales Reconstruction”, Heat Transf. Res., 45:2 (2014), 97–118  crossref  mathscinet  isi  scopus
    9. A. A. Chernyshov, K. V. Karelsky, A. S. Petrosyan, “Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas”, Phys. Usp., 57:5 (2014), 421–452  mathnet  crossref  crossref  adsnasa  isi  elib  elib
    10. JETP Letters, 99:1 (2014), 16–21  mathnet  crossref  crossref  isi  elib  elib
    11. G.V.. Gembarzhevskii, “An Approach to Plasma Wake Studying”, JMP, 06:01 (2015), 46  crossref
    12. V. N. Krivodubskij, “Small scale alpha-squared effect in the solar convection zone”, Kinemat. Phys. Celest. Bodies, 31:2 (2015), 55  crossref  isi  elib  scopus
    13. Budaev V.P., Zelenyi L.M., Savin S.P., “Generalized Self-Similarity of Intermittent Plasma Turbulence in Space and Laboratory Plasmas”, J. Plasma Phys., 81:6 (2015), 395810602  crossref  isi  elib  scopus
    14. Gembarzhevskii G.V., Lednev A.K., Osipenko K.Yu., “Simulation of Evolution of the Two Cylinders Plasma Wake Under the Electric Discharge Influence”, Tech. Phys. Lett., 41:12 (2015), 1132–1135  crossref  isi  elib  scopus
    15. Riazantseva M.O., Budaev V.P., Zelenyi L.M., Zastenker G.N., Pavlos G.P., Safrankova J., Nemecek Z., Prech L., Nemec F., “Dynamic Properties of Small-Scale Solar Wind Plasma Fluctuations”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 373:2041 (2015), 20140146  crossref  isi  scopus
    16. K. P. Zybin, V. A. Sirota, “Model of stretching vortex filaments and foundations of the statistical theory of turbulence”, Phys. Usp., 58:6 (2015), 556–573  mathnet  crossref  crossref  adsnasa  isi  elib
    17. Sharma A.S., Aschwanden M.J., Crosby N.B., Klimas A.J., Milovanov A.V., Morales L., Sanchez R., Uritsky V., “25 Years of Self-Organized Criticality: Space and Laboratory Plasmas”, Space Sci. Rev., 198:1-4 (2016), 167–216  crossref  isi  scopus
    18. Riazantseva M.O., Budaev V.P., Rakhmanova L.S., Zastenker G.N., Safrankova J., Nemecek Z., Prech L., “Comparison of properties of small-scale ion flux fluctuations in the flank magnetosheath and in the solar wind”, Adv. Space Res., 58:2 (2016), 166–174  crossref  isi  scopus
    19. Silin V.P., Budaev V.P., Savin S.P., Rakhmanova L.S., Ryazantsev M.O., Popov V.Yu., Uryupin S.A., “On the superdiffusive scalings of transport in plasma”, Bull. Lebedev Phys. Inst., 43:4 (2016), 132–137  crossref  isi  elib  scopus
    20. V. P. Budaev, “Stochastic clustering of the surface at the interaction of a plasma with materials”, JETP Letters, 105:5 (2017), 307–313  mathnet  crossref  crossref  isi  elib
    21. N. S. Arkashov, V. A. Seleznev, “Formation of a relation of nonlocalities in the anomalous diffusion model”, Theoret. and Math. Phys., 193:1 (2017), 1508–1523  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    22. Smolanov N.A., “Complex Analysis of Microparticles Deposited From Arc-Discharge Plasma on Vacuum-Chamber Walls”, J. Surf. Ingestig., 11:2 (2017), 353–360  crossref  isi  scopus
    23. Budaev V.P., “Stochastic Clustering of Material Surface Under High-Heat Plasma Load”, Phys. Lett. A, 381:43 (2017), 3706–3713  crossref  isi  scopus
    24. Riazantseva M.O., Budaev V.P., Rakhmanova L.S., Borodkova N.L., Zastenker G.N., Yermolaev Yu.I., Safrankova J., Nemecek Z., Prech L., Pitna A., “Intermittency of the Solar Wind Density Near the Interplanetary Shock”, Geomagn. Aeron., 57:6 (2017), 645–654  crossref  isi  scopus
    25. Riazantseva M., Budaev V., Rakhmanova L., Zastenker G., Yermolaev Yu., Lodkina I., Safrankova J., Nemecek Z., Prech L., “Variety of Shapes of Solar Wind Ion Flux Spectra: Spektr-R Measurements”, J. Plasma Phys., 83:4 (2017), 705830401  crossref  isi
    26. Budaev V.P., “Innovative Potential of Plasma Technology”, International Conference Problems of Thermal Physics and Power Engineering (PTPPE-2017), Journal of Physics Conference Series, 891, IOP Publishing Ltd, 2017, UNSP 012301  crossref  isi  scopus
    27. Smolanov N.A., “On the Fractality of Microparticles From the Plasma Flow of a Vacuum Arc Discharge”, J. Surf. Ingestig., 12:3 (2018), 593–597  crossref  isi  scopus
  • Успехи физических наук Physics-Uspekhi
    Number of views:
    This page:242
    Full text:68
    References:36
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019