RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Подписка
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УФН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


УФН, 2012, том 182, номер 11, страницы 1137–1156 (Mi ufn4159)  

Эта публикация цитируется в 61 научных статьях (всего в 61 статьях)

ОБЗОРЫ АКТУАЛЬНЫХ ПРОБЛЕМ

Где находится область сверхкритического флюида на фазовой диаграмме?

В. В. Бражкинab, А. Г. Ляпинa, В. Н. Рыжовab, К. Траченкоc, Ю. Д. Фоминa, Е. Н. Циокa

a Институт физики высоких давлений им. Л. Ф. Верещагина РАН
b Московский физико-технический институт
c South East Physics Network and School of Physics, Queen Mary University of London

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке


Аннотация: Рассматривается флюидное состояние вещества при высоких температурах и сверхвысоких давлениях. Представлен обзор вариантов построения условной границы между жидкостью и квазигазовым флюидом в закритической области. Показано, что иногда используемое “термодинамическое” продолжение линии кипения — линия Уидома — является единой линией лишь вблизи критической точки и веером коротких линий при дальнейшем возрастании температуры. Предлагается новая, разделяющая жидкость и флюид, “динамическая” линия, которая связана с различием типов траекторий частиц и механизмов диффузии в жидкостях и плотных газах. Положение данной линии соответствует условию равенства времени релаксации в жидкости и минимального периода поперечных акустических возбуждений. При достижении этой линии исчезают сдвиговые волны в жидкости на всех частотах, коэффициент диффузии приближается к своему значению вблизи критической точки, скорость звука становится близкой к удвоенному значению тепловой скорости частиц и теплоёмкость жидкости уменьшается до удвоенной константы Больцмана в расчёте на частицу. В пределе высокого сжатия температура на данной линии имеет ту же функциональную зависимость от давления, что и температура плавления. “Динамическая” линия, в отличие от линии Уидома, может рассматриваться как граница, разделяющая жидкость и сверхкритический флюид в области, далёкой от критической точки, при сверхвысоких давлениях. Для данной линии предлагается название “линия Френкеля”.
Автор для корреспонденции

DOI: https://doi.org/10.3367/UFNr.0182.201211a.1137

Полный текст: PDF файл (1078 kB)
Полный текст: http://www.ufn.ru/.../a
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Physics–Uspekhi, 2012, 55:11, 1061–1079

Реферативные базы данных:

Тип публикации: Статья
PACS: 62.10.+s, 62.50.-p, 63.50.-x, 64.60.F-, 64.60.fd, 65.20.De, 66.20.Cy
Поступила: 20 сентября 2011 г.
Доработана: 31 октября 2011 г.
Одобрена в печать: 2 ноября 2011 г.

Образец цитирования: В. В. Бражкин, А. Г. Ляпин, В. Н. Рыжов, К. Траченко, Ю. Д. Фомин, Е. Н. Циок, “Где находится область сверхкритического флюида на фазовой диаграмме?”, УФН, 182:11 (2012), 1137–1156; Phys. Usp., 55:11 (2012), 1061–1079

Цитирование в формате AMSBIB
\RBibitem{BraLyaRyz12}
\by В.~В.~Бражкин, А.~Г.~Ляпин, В.~Н.~Рыжов, К.~Траченко, Ю.~Д.~Фомин, Е.~Н.~Циок
\paper Где находится область сверхкритического флюида на фазовой диаграмме?
\jour УФН
\yr 2012
\vol 182
\issue 11
\pages 1137--1156
\mathnet{http://mi.mathnet.ru/ufn4159}
\crossref{https://doi.org/10.3367/UFNr.0182.201211a.1137}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012PhyU...55.1061B}
\elib{http://elibrary.ru/item.asp?id=23103565}
\transl
\jour Phys. Usp.
\yr 2012
\vol 55
\issue 11
\pages 1061--1079
\crossref{https://doi.org/10.3367/UFNe.0182.201211a.1137}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314808600001}
\elib{http://elibrary.ru/item.asp?id=20483984}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84873901364}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/ufn4159
  • http://mi.mathnet.ru/rus/ufn/v182/i11/p1137

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. P. N. Nikolaev, “The generalized van Laar approximation for free energy”, Moscow Univ. Phys, 68:3 (2013), 196  crossref  mathscinet  isi  elib  scopus
    2. E.M. Apfelbaum, V.S. Vorob'ev, “Regarding the Universality of Some Consequences of the Van der Waals Equation in the Supercritical Domain”, J. Phys. Chem. B, 117:25 (2013), 7750–7755  crossref  isi  elib  scopus
    3. В. П. Маслов, “Распределение типа распределения Бозе–Эйнштейна для неидеального газа. Двухжидкостная модель надкритического состояния и ее приложения”, Матем. заметки, 94:2 (2013), 237–245  mathnet  crossref  mathscinet  zmath  elib; V. P. Maslov, “Bose–Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications”, Math. Notes, 94:2 (2013), 231–237  crossref  isi  elib
    4. V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, V. N. Ryzhov, E. N. Tsiok, ““Liquid-Gas” Transition in the Supercritical Region: Fundamental Changes in the Particle Dynamics”, Phys. Rev. Lett, 111:14 (2013)  crossref  isi  elib  scopus
    5. V. P. Maslov, “A mathematical theory of the supercritical state serving as an effective means of destruction of chemical warfare agents”, Math Notes, 94:3-4 (2013), 532  crossref  zmath  isi  elib  scopus
    6. V. P. Maslov, “Undistinguishing statistics of objectively distinguishable objects: Thermodynamics and superfluidity of classical gas”, Math Notes, 94:5-6 (2013), 722  crossref  mathscinet  zmath  isi  elib  scopus
    7. V. P. Maslov, “On the introduction of the temperature standard in the undistinguishing parastatistics of objectively distinguishable objects”, Math Notes, 95:1-2 (2014), 91  crossref  mathscinet  zmath  isi  elib  scopus
    8. V. P. Maslov, “The relationship between the Van-Der-Waals model and the undistinguishing statistics of objectively distinguishable objects. The new parastatistics”, Russ. J. Math. Phys, 21:1 (2014), 99  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    9. V. V. Brazhkin, Yu. D. Fomin, V. N. Ryzhov, E. E. Tareyeva, E. N. Tsiok, “True Widom line for a square-well system”, Phys. Rev. E, 89:4 (2014)  crossref  isi  elib  scopus
    10. V. P. Maslov, “New construction of classical thermodynamics and UD-statistics”, Russ. J. Math. Phys, 21:2 (2014), 256  crossref  mathscinet  zmath  isi  elib  scopus
    11. V. P. Maslov, “Supercritical mesoscopic thermodynamics”, Math Notes, 95:5-6 (2014), 670  crossref  mathscinet  zmath  isi  elib  scopus
    12. Р. М. Хуснутдинов, А. В. Мокшин, “Атомарные коллективные возбуждения в жидком свинце”, Письма в ЖЭТФ, 100:1 (2014), 42–46  mathnet  crossref  elib; R. M. Khusnutdinov, A. V. Mokshin, “Atomic collective excitations in liquid lead”, JETP Letters, 100:1 (2014), 39–43  crossref  isi  elib
    13. R. E. Ryltsev, N. M. Chtchelkatchev, “Hydrodynamic anomalies in supercritical fluid”, J. Chem. Phys, 141:12 (2014), 124509  crossref  isi  elib  scopus
    14. Taras Bryk, Federico Gorelli, Giancarlo Ruocco, Mario Santoro, Tullio Scopigno, “Collective excitations in soft-sphere fluids”, Phys. Rev. E, 90:4 (2014)  crossref  isi  scopus
    15. В. П. Маслов, “Двухфлюидная картина надкритических явлений”, ТМФ, 180:3 (2014), 394–432  mathnet  crossref  mathscinet  adsnasa  elib; V. P. Maslov, “Two-fluid picture of supercritical phenomena”, Theoret. and Math. Phys., 180:3 (2014), 1096–1129  crossref  isi  elib
    16. V. P. Maslov, “New parastatistics leading to classical thermodynamics: Physical interpretation. II”, Math Notes, 96:3-4 (2014), 403  crossref  mathscinet  zmath  isi  scopus
    17. Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, K. Trachenko, “Dynamic transition in supercritical iron”, Sci. Rep, 4 (2014), 7194  crossref  isi  elib  scopus
    18. O. N. Fedyaeva, A. A. Vostrikov, A. V. Shishkin, N. I. Fedorova, “Liquefaction of liptobiolith coal in supercritical water flow under nonisothermal conditions”, Russ. J. Phys. Chem. B, 8:8 (2014), 1054  crossref  isi  elib  scopus
    19. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, “The Frenkel line and supercritical technologies”, Russ. J. Phys. Chem. B, 8:8 (2014), 1087  crossref  isi  elib  scopus
    20. Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, “Thermodynamic properties of supercritical carbon dioxide: Widom and Frenkel lines”, Phys. Rev. E, 91:2 (2015)  crossref  isi  elib  scopus
    21. K. Trachenko, V. V. Brazhkin, “Reply to “Comment on ‘Dynamic transition of supercritical hydrogen: Defining the boundary between interior and atmosphere in gas giants’ ””, Phys. Rev. E, 91:3 (2015)  crossref  isi  elib  scopus
    22. Norman G.E., Saitov I.M., Stegailov V.V., “Plasma-Plasma and Liquid-Liquid First-Order Phase Transitions”, Contrib. Plasma Phys., 55:2-3, SI (2015), 215–221  crossref  isi  elib  scopus
    23. Armstrong G., “An Introduction To Polymer Nanocomposites”, Eur. J. Phys., 36:6 (2015), 063001  crossref  isi  elib  scopus
    24. Fomin Yu.D., Ryzhov V.N., Tsiok E.N., Brazhkin V.V., “Dynamical Crossover Line in Supercritical Water”, Sci Rep, 5 (2015), 14234  crossref  isi  elib  scopus
    25. Khomkin A.L., Shumikhin A.S., “Critical Points of Metal Vapors”, J. Exp. Theor. Phys., 121:3 (2015), 521–528  crossref  isi  elib  scopus
    26. Petrusha I.A., Osipov A.S., Nikishina M.V., Smirnova T.I., Mel'niichuk Yu.A., Klimczyk P., “Preventive Action of Silicon Nitride At Ht-Hp Sintering of Cubic Boron Nitride”, J. Superhard Mater., 37:4 (2015), 222–233  crossref  isi  scopus
    27. Khomkin A.L. Shumikhin A.S., “Influence of Solid-State Characteristics on Critical Parameters of Vapor Liquid Phase Transition”, Xxx International Conference on Interaction of Intense Energy Fluxes With Matter (Elbrus 2015), Journal of Physics Conference Series, 653, IOP Publishing Ltd, 2015, 012083  crossref  isi  scopus
    28. Apfelbaum E. Vorob'ev V., “the Generalized Similarity Laws and Isocontours in the Thermodynamics of Simple Liquids”, Physics of Liquid Matter: Modern Problems, Springer Proceedings in Physics, 171, ed. Bulavin L. Lebovka N., Springer-Verlag Berlin, 2015, 139–161  crossref  isi  scopus
    29. В. С. Воробьев, Е. М. Апфельбаум, “Обобщенные законы подобия на основе некоторых следствий уравнения Ван-дер-Ваальса”, ТВТ, 54:2 (2016), 186–196  mathnet  crossref  elib; V. S. Vorob'ev, E. M. Apfel'baum, “The generalized scaling laws based on several deductions from the van der Waals equation”, High Temperature, 54:2 (2016), 175–185  crossref  isi
    30. Trachenko K., Brazhkin V.V., “Collective Modes and Thermodynamics of the Liquid State”, Rep. Prog. Phys., 79:1 (2016), 016502  crossref  mathscinet  isi  scopus
    31. Е. Е. Тареева, В. Н. Рыжов, “Закритическая жидкость частиц с потенциалом Юкавы: новое приближение для прямой корреляционной функции и линия Видома”, ТМФ, 189:3 (2016), 464–476  mathnet  crossref  mathscinet  adsnasa  elib; E. E. Tareeva, V. N. Ryzhov, “Supercritical fluid of particles with a Yukawa potential: A new approximation for the direct correlation function and the Widom line”, Theoret. and Math. Phys., 189:3 (2016), 1806–1817  crossref  isi
    32. Khomkin A.L., Shumikhin A.S., “Conductivity of metal vapors at the critical point”, J. Exp. Theor. Phys., 123:5 (2016), 891–898  crossref  isi  scopus
    33. Desgranges C., Delhommelle J., “Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. V. Impact of an electric field on the thermodynamic properties and ideality contours of water”, J. Chem. Phys., 145:18 (2016), 184504  crossref  isi  elib  scopus
    34. Dyre J.C., “Simple liquids' quasiuniversality and the hard-sphere paradigm”, J. Phys.-Condes. Matter, 28:32 (2016), 323001  crossref  isi  scopus
    35. Gaiduk E.A., Fomin Yu.D., Ryzhov V.N., Tsiok E.N., Brazhkin V.V., “Dynamical crossover in supercritical core-softened fluids”, Fluid Phase Equilib., 417 (2016), 237–241  crossref  isi  elib  scopus
    36. Fomin Yu.D., Ryzhov V.N., Tsiok E.N., Brazhkin V.V., Trachenko K., “Crossover of collective modes and positive sound dispersion in supercritical state”, J. Phys.-Condes. Matter, 28:43 (2016)  crossref  zmath  isi  scopus
    37. Khomkin A.L., Shumikhin A.S., “Features of the Vapor-Liquid (dielectric-metal) Phase Transition in Metal Vapors, Semiconductors and Rare Gases”, Contrib. Plasma Phys., 56:3-4, SI (2016), 228–233  crossref  isi  elib  scopus
    38. Khusnutdinoff R.M., “Microscopic collective dynamics of water”, Colloid J., 78:2 (2016), 225–234  crossref  isi  elib  scopus
    39. Norman G.E., Saitov I.M., “Fluid-Fluid-Solid Triple Point on Melting Curves At High Temperatures”, Xxxi International Conference on Equations of State For Matter (Elbrus 2016), Journal of Physics Conference Series, 774, IOP Publishing Ltd, 2016, UNSP 012015  crossref  isi  scopus
    40. L. Wang, C. Yang, M. T. Dove, Yu. D. Fomin, V. V. Brazhkin, K. Trachenko, “Direct links between dynamical, thermodynamic, and structural properties of liquids: Modeling results”, Phys. Rev. E, 95:3 (2017), 032116  crossref  isi  scopus
    41. A. L. Khomkin, A. S. Shumikhin, “Effect of solid-state characteristics on the critical parameters of the vapor–liquid phase transition”, J. Exp. Theor. Phys., 124:1 (2017), 70–76  crossref  isi  scopus
    42. В. В. Бражкин, “Фазовые превращения в жидкостях и переход жидкость – газ во флюидах при сверхкритических давлениях”, УФН, 187:9 (2017), 1028–1032  mathnet  crossref  adsnasa  elib; V. V. Brazhkin, “Phase transformations in liquids and the liquid–gas transition in fluids at supercritical pressures”, Phys. Usp., 60:9 (2017), 954–957  crossref  isi
    43. S. Artemenko, P. Krijgsman, V. Mazur, “The Widom Line For Supercritical Fluids”, J. Mol. Liq., 238 (2017), 122–128  crossref  isi  scopus
    44. C. Prescher, Yu. D. Fomin, V. B. Prakapenka, J. Stefanski, K. Trachenko, V. V. Brazhkin, “Experimental Evidence of the Frenkel Line in Supercritical Neon”, Phys. Rev. B, 95:13 (2017), 134114  crossref  isi  elib  scopus
    45. L. Wang, M. T. Dove, K. Trachenko, Yu. D. Fomin, V. V. Brazhkin, “Supercritical Gruneisen Parameter and Its Universality At the Frenkel Line”, Phys. Rev. E, 96:1 (2017), 012107  crossref  isi  scopus
    46. A. L. Khomkin, A. S. Shumikhin, “Transition From Gas-Kinetic to Minimal Metal-Type Conductivity in a Supercritical Fluid of Metal Vapor”, J. Exp. Theor. Phys., 124:6 (2017), 1001–1009  crossref  isi  scopus
    47. S. Khrapak, B. Klumov, L. Couedel, “Collective Modes in Simple Melts: Transition From Soft Spheres to the Hard Sphere Limit”, Sci Rep, 7 (2017), 7985  crossref  isi
    48. V. V. Brazhkin, Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, K. Trachenko, “Rigid Liquid -to-Dense Gas Transition At Supercritical Pressures”, Joint Airapt-25Th & Ehprg-53Rd International Conference on High Pressure Science and Technology, 2015, Journal of Physics Conference Series, 950, IOP Publishing Ltd, 2017, UNSP 032019  crossref  isi
    49. P. V. Skripov, S. B. Rutin, “Heat Transfer in Supercritical Fluids: the Case of High-Power Heat Release”, Interfacial Phenom. Heat Transf., 5:3, SI (2017), 187–200  crossref  isi
    50. Е. Е. Тареева, Ю. Д. Фомин, Е. Н. Циок, В. Н. Рыжов, “Закритические аномалии и линия Видома для изоструктурного фазового перехода в твердом теле”, ТМФ, 194:1 (2018), 175–184  mathnet  crossref  adsnasa  elib; E. E. Tareyeva, Yu. D. Fomin, E. N. Tsyok, V. N. Ryzhov, “Supercritical anomalies and the Widom line for the isostructural phase transition in solids”, Theoret. and Math. Phys., 194:1 (2018), 148–156  crossref  isi
    51. Fomin Yu.D., Ryzhov V.N., Tsiok E.N., Proctor J.E., Prescher C., Prakapenka V.B., Trachenko K., Brazhkin V.V., “Dynamics, Thermodynamics and Structure of Liquids and Supercritical Fluids: Crossover At the Frenkel Line”, J. Phys.-Condes. Matter, 30:13 (2018), 134003  crossref  isi  scopus
    52. Pipich V., Schwahn D., “Densification of Supercritical Carbon Dioxide Accompanied By Droplet Formation When Passing the Widom Line”, Phys. Rev. Lett., 120:14 (2018), 145701  crossref  isi  scopus
    53. Mareev E., Aleshkevich V., Potemkin F., Bagratashvili V., Minaev N., Gordienko V., “Anomalous Behavior of Nonlinear Refractive Indexes of Co2 and Xe in Supercritical States”, Opt. Express, 26:10 (2018), 13229–13238  crossref  isi  scopus
    54. Brazhkin V.V., Prescher C., Fomin Yu.D., Tsiok E.N., Lyapin A.G., Ryzhov V.N., Prakapenka V.B., Stefanski J., Trachenko K., Sapelkin A., “Comment on “Behavior of Supercritical Fluids Across the ‘Frenkel Line”’”, J. Phys. Chem. B, 122:22 (2018), 6124–6128  crossref  isi  scopus
    55. Brazhkin V.V., Fomin Yu.D., Ryzhov V.N., Tsiok E.N., Trachenko K., “Liquid-Like and Gas-Like Features of a Simple Fluid: An Insight From Theory and Simulation”, Physica A, 509 (2018), 690–702  crossref  isi  scopus
    56. А. Л. Хомкин, А. С. Шумихин, “Уравнение состояния, состав и проводимость сверхкритических паров железа в рамках модели плазменного флюида”, ТВТ, 56:4 (2018), 483–489  mathnet  crossref  elib; A. L. Khomkin, A. S. Shumikhin, “Equation of state, composition, and conductivity of supercritical iron vapor in the plasma fluid model”, High Temperature, 56:4 (2018), 467–472  crossref  isi  elib
    57. Khomkin A.L., Shumikhin A.S., “Thermodynamic and Transport Properties of Beryllium Vapor in the Supercritical Fluid State”, Plasma Phys. Rep., 44:10 (2018), 958–964  crossref  isi  scopus
    58. Kats E.I., “Effect of Polydispersity on the Phase Diagram of Colloid Systems”, J. Exp. Theor. Phys., 127:5, SI (2018), 939–944  crossref  isi  scopus
    59. Lazarev A.V., Tatarenko P.A., Tatarenko K.A., “Gas-Dynamic Model of the Expansion of a Pulse Jet of Supercritical Carbon Dioxide: the Strategy of the Experiment”, Russ. J. Phys. Chem. B, 12:7 (2018), 1152–1159  crossref  isi  scopus
    60. Pipich V., Schlenstedt K., Dickmann M., Kasher R., Meier-Haack J., Hugenschmidt Ch., Petry W., Oren Y., Schwahn D., “Morphology and Porous Structure of Standalone Aromatic Polyamide Films as Used in Ro Membranes - An Exploration With Sans, Pals, and Sem”, J. Membr. Sci., 573 (2019), 167–176  crossref  isi  scopus
    61. Fomin Yu.D., “Anomalously High Heat Capacity of Core-Softened Liquids”, Phys. Chem. Liq., 57:1 (2019), 67–74  crossref  isi  scopus
  • Успехи физических наук Physics-Uspekhi
    Просмотров:
    Эта страница:432
    Полный текст:107
    Видеоаннотация:83
    Литература:50
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019