|
This article is cited in 40 scientific papers (total in 40 papers)
METHODOLOGICAL NOTES
Dynamical chaos: systems of classical mechanics
A. Yu. Loskutov Physics Department, M. V. Lomonosov Moscow State University
Abstract:
This article is a methodological manual for those who are interested in chaotic dynamics. An exposition is given on the foundations of the theory of deterministic chaos that originates in classical mechanics systems. Fundamental results obtained in this area are presented, such as elements of the theory of nonlinear resonance and the Kolmogorov–Arnol'd–Moser theory, the Poincaré–Birkhoff fixed-point theorem, and the Mel'nikov method. Particular attention is given to the analysis of the phenomena underlying the self-similarity and nature of chaos: splitting of separatrices and homoclinic and heteroclinic tangles. Important properties of chaotic systems — unpredictability, irreversibility, and decay of temporal correlations — are described. Models of classical statistical mechanics with chaotic properties, which have become popular in recent years — billiards with oscillating boundaries — are considered. It is shown that if a billiard has the property of well-developed chaos, then perturbations of its boundaries result in Fermi acceleration. But in nearly-integrable billiard systems, excitations of the boundaries lead to a new phenomenon in the ensemble of particles, separation of particles in accordance their velocities. If the initial velocity of the particles exceeds a certain critical value characteristic of the given billiard geometry, the particles accelerate; otherwise, they decelerate.
DOI:
https://doi.org/10.3367/UFNr.0177.200709d.0989
Full text:
PDF file (5422 kB)
Full text:
http://www.ufn.ru/ru/articles/2007/9/d/
References:
PDF file
HTML file
English version:
Physics–Uspekhi, 2007, 50:9, 939–964
Bibliographic databases:
Document Type:
Article
PACS:
05.45.-a, 05.45.Ac Received: January 31, 2007 Revised: April 25, 2007
Citation:
A. Yu. Loskutov, “Dynamical chaos: systems of classical mechanics”, UFN, 177:9 (2007), 989–1015; Phys. Usp., 50:9 (2007), 939–964
Citation in format AMSBIB
\Bibitem{Los07}
\by A.~Yu.~Loskutov
\paper Dynamical chaos: systems of classical mechanics
\jour UFN
\yr 2007
\vol 177
\issue 9
\pages 989--1015
\mathnet{http://mi.mathnet.ru/ufn514}
\crossref{https://doi.org/10.3367/UFNr.0177.200709d.0989}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2007PhyU...50..939L}
\elib{http://elibrary.ru/item.asp?id=13551786}
\transl
\jour Phys. Usp.
\yr 2007
\vol 50
\issue 9
\pages 939--964
\crossref{https://doi.org/10.1070/PU2007v050n09ABEH006341}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000252639900004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349081661}
Linking options:
http://mi.mathnet.ru/eng/ufn514 http://mi.mathnet.ru/eng/ufn/v177/i9/p989
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
L. A. Kalyakin, “Asymptotic analysis of autoresonance models”, Russian Math. Surveys, 63:5 (2008), 791–857
-
Magnitskii N.A., “On the nature of dynamic chaos in a neighborhood of a separatrix of a conservative system”, Differ. Equ., 45:5 (2009), 662–669
-
Manchein C., Beims M.W., “issipation effects in the ratchetlike Fermi acceleration”, Math. Probl. Eng., 2009, 513023, 9 pp.
-
Loskutov A., Leonel E.D., “Time-Dependent Billiards”, Math. Probl. Eng., 2009, 848619, 4 pp.
-
Aslanov V.S., “Spatial chaotic vibrations when there is a periodic change in the position of the centre of mass of a body in the atmosphere”, J. Appl. Math. Mech., 73:2 (2009), 179–187
-
B. E. Petrov, “Statistical characteristics of chaoticity and incomplete chaoticity of irregular oscillations generated by a strongly nonlinear autonomous system with two degrees of freedom”, J Commun Technol Electron, 55:1 (2010), 72
-
A B Ryabov, A Loskutov, “Time-dependent focusing billiards and macroscopic realization of Maxwell's Demon”, J Phys A Math Theor, 43:12 (2010), 125104
-
A. Yu. Loskutov, “Fascination of chaos”, Phys. Usp., 53:12 (2010), 1257–1280
-
Loskutov A., Ryabov A., Leonel E.D., “Separation of particles in time-dependent focusing billiards”, Physica A-Statistical Mechanics and Its Applications, 389:23 (2010), 5408–5415
-
A. Yu. Loskutov, A. B. Ryabov, A. K. Krasnova, O. A. Chichigina, “Bilyardy s vozmuschaemymi granitsami i nekotorye ikh svoistva”, Nelineinaya dinam., 6:3 (2010), 573–604
-
Mikoss I., Garcia P., “An Exact Map for a Chaotic Billiard”, International Journal of Modern Physics B, 25:5 (2011), 673–681
-
V. P. Budaev, S. P. Savin, L. M. Zelenyi, “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features”, Phys. Usp., 54:9 (2011), 875–918
-
Talagaev Yu.V., Tarakanov A.F., “Mnogoparametricheskii analiz na osnove kriteriya melnikova i optimalnoe podavlenie khaosa v periodicheski vozmuschaemykh dinamicheskikh sistemakh”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 19:4 (2011), 77–90
-
Edson D. Leonel, Carl P. Dettmann, “Recurrence of particles in static and time varying oval billiards”, Physics Letters A, 376:20 (2012), 1669–1674
-
Alexander Loskutov, Olga Chichigina, Alexandra Krasnova, Igor M. Sokolov, “Superdiffusion in 2D open-horizon billiards with stochastically oscillating boundaries”, EPL, 98:1 (2012), 10006
-
A. K. Krasnova, O. A. Chichigina, “Fermi acceleration as a possible mechanism of rapid diffusion of gold clusters on graphite”, Moscow Univ. Phys, 67:1 (2012), 48
-
Goldman V.M., Novoselov V.I., “Struktura i soderzhanie osnovnykh ponyatii distsipliny «statisticheskaya termodinamika» s pozitsii dostizhenii sovremennoi fiziki i fizicheskogo obrazovaniya”, Fizicheskoe obrazovanie v vuzakh, 18:1 (2012), 12–21
-
Genri E. Norman, Vladimir V. Stegailov, “Stochastic theory of the classical molecular dynamics method”, Math. Models Comput. Simul., 5:4 (2013), 305–333
-
Sergey V. Kapranov, Guennadi A. Kouzaev, “Stochastic dynamics of an electric dipole in external electric fields: A perturbed nonlinear pendulum approach”, Physica D: Nonlinear Phenomena, 2013
-
N. A. Magnitskii, “Nonclassical approach to the analysis of Hamiltonian and conservative systems”, Comput Math Model, 2013
-
S.V. Kryuchkov, E.I. Kukhar, D.V. Zav'yalov, “Dynamic chaotization of the electronic subsystem in graphene superlattice”, Physica E: Low-dimensional Systems and Nanostructures, 2013
-
S.V. Kryuchkov, E.I. Kukhar’, D.V. Zav’yalov, “Chaotic behavior of the electrons in graphene superlattice”, Superlattices and Microstructures, 2013
-
V. D. Vinokurova, N. N. Rosanov, “The Fermi-Ulam problem and sticking mode”, Tech. Phys. Lett, 40:11 (2014), 946
-
N. N. Rozanov, N. V. Vysotina, “Soliton in stationary and dynamical traps”, JETP Letters, 100:8 (2014), 508–511
-
Rosanov N.N., Sochilin G.B., Vinokurova V.D., Vysotina N.V., “Spatial and Temporal Structures in Cavities With Oscillating Boundaries”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 372:2027, SI (2014), 20140012
-
Kryuchkov S.V. Kukhar E.I., “Propagation of Electromagnetic Solitons in Quantum Superlattices Subjected To the High-Frequency Radiation”, J. Nanoelectron. Optoelectron., 9:4 (2014), 564–569
-
Mokeev A., Korobko E., Bubulis A., “Simulation of Concentration Distribution of Dispersed Particles of Magnetorheological Fluid in the Gap Workpiece-Tool of Finishing Polishing Device”, Mechanika, 2014, no. 2, 221–225
-
N.N.. Rosanov, N.V.. Vysotina, “Fermi-Ulam problem for solitons”, Phys. Rev. A, 91:1 (2015)
-
S. V. Kryuchkov, E. I. Kukhar’, “Possibility of propagation of dissipative solitons in ac-driven superlattice”, Phys. Wave Phen, 23:1 (2015), 21
-
N.N.. Rosanov, N.V.. Vysotina, “Recurrence for motion of solitons of the Bose–Einstein condensate in a dynamic trap”, J. Opt. Soc. Am. B, 32:5 (2015), B20
-
S. V. Kryuchkov, E. I. Kukhar', “Alternating current-driven graphene superlattices: Kinks, dissipative solitons, dynamic chaotization”, Chaos, 25:7 (2015), 073116
-
Yu. E. Kuzovlev, “Why nature needs 1/f noise”, Phys. Usp., 58:7 (2015), 719–729
-
N. N. Rosanov, “Absolute stability of dynamic cavities”, Opt. Spectrosc, 119:1 (2015), 124
-
S.V. Kryuchkov, E.I. Kukhar’, “Dynamic chaotisation of the electronic subsystem in a graphene superlattice subjected to the electromagnetic radiation”, Laser Phys, 25:9 (2015), 095901
-
Rosanov N.N., “on Three-Dimensional Dynamics of Oscillons of Bose–Einstein Condensate”, Opt. Spectrosc., 119:6 (2015), 1000–1003
-
Vinokurova V.D., Rozanov N.N., Fedorov E.G., “On the particle dynamics in a dynamic billiard”, Tech. Phys., 61:7 (2016), 965–970
-
Aslanov V.S., Ledkov A.S., “Chaotic Motion of a Reentry Capsule During Descent into the Atmosphere”, J. Guid. Control Dyn., 39:8 (2016), 1834–1843
-
Camillo Galia M.V., Oliveira D.F.M., Leonel E.D., “Evolution to the equilibrium in a dissipative and time dependent billiard”, Physica A, 465 (2017), 66–74
-
Aslanov V.S., “Reentry Attitude Dynamics”: Aslanov, VS, Rigid Body Dynamics For Space Applications, Butterworth-Heinemann, 2017, 25–125
-
L. F. Petrov, “Search for periodic solutions of highly nonlinear dynamical systems”, Comput. Math. Math. Phys., 58:3 (2018), 384–393
|
Number of views: |
This page: | 743 | Full text: | 275 | References: | 27 | First page: | 1 |
|