General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS


Personal entry:
Save password
Forgotten password?

UFN, 2017, Volume 187, Number 11, Pages 1205–1235 (Mi ufn5921)  

This article is cited in 17 scientific papers (total in 17 papers)


Orbital physics in transition metal compounds: new trends

S. V. Streltsovab, D. I. Khomskiic

a Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
c University of Cologne, Institute of Physics II

Abstract: The present review discusses different effects related to orbital degrees of freedom. Leaving aside such aspects as the superexchange mechanism of cooperative Jahn–Teller distortions and various properties of ‘Kugel–Khomskii’-like models, we mostly concentrate on other phenomena, which are the focus of modern condensed matter physics. After a general introduction, we start with a discussion of the concept of effective reduction of dimensionality due to orbital degrees of freedom and consider such phenomena as the orbitally driven Peierls effect and the formation of small clusters of ions in the vicinity of the Mott transition, which behave like ‘molecules’ embedded in a solid. The second large part is devoted to orbital-selective effects, such as the orbital-selective Mott transition and the suppression of magnetism due to the fact that the electrons on some orbitals start to form singlet molecular orbitals. At the end, the rapidly growing field of so-called ‘spin–orbit-dominated’ transition metal compounds is briefly reviewed, including such topics as the interplay between the spin–orbit coupling and the Jahn–Teller effect, the formation of the spin–orbit-driven Mott and Peierls states, the role of orbital degrees of freedom in generating the Kitaev exchange coupling, and the singlet (excitonic) magnetism in 4d and 5d transition metal compounds.

Funding Agency Grant Number
Russian Science Foundation 17-12-01207
This work was supported by the Russian Science Foundation through project 17-12-01207.


Full text: PDF file (1302 kB)
First page: PDF file
Full text:
References: PDF file   HTML file

English version:
Physics–Uspekhi, 2017, 60:11, 1121–1146

Bibliographic databases:

PACS: 71.20.Be, 71.70.-d, 75.10.-b
Received: July 17, 2017
Revised: August 1, 2017
Accepted: August 16, 2017

Citation: S. V. Streltsov, D. I. Khomskii, “Orbital physics in transition metal compounds: new trends”, UFN, 187:11 (2017), 1205–1235; Phys. Usp., 60:11 (2017), 1121–1146

Citation in format AMSBIB
\by S.~V.~Streltsov, D.~I.~Khomskii
\paper Orbital physics in transition metal compounds: new trends
\jour UFN
\yr 2017
\vol 187
\issue 11
\pages 1205--1235
\jour Phys. Usp.
\yr 2017
\vol 60
\issue 11
\pages 1121--1146

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Related articles in the database Math-Net.Ru

    This publication is cited in the following articles:
    1. D. M. Korotin, S. V. Streltsov, E. G. Gerasimov, N. V. Mushnikov, I. S. Zhidkov, A. I. Kukharenko, L. D. Finkelstein, S. O. Cholakh, E. Z. Kurmaev, “Magnetic ordering in intermetallic La$_{1-x}$Tb$_x$Mn$_2$Si$_2$ compounds”, J. Magn. Magn. Mater., 454 (2018), 144–149  crossref  isi
    2. T. Yamaguchi, K. Sugimoto, Y. Ohta, Y. Tanaka, H. Sato, “Ferromagnetic Peierls insulator state in $A\mathrm {Mg_4Mn_6O_{15}}$ ($A=\mathrm{K, Rb, Cs}$)”, Phys. Rev. B, 97:16 (2018), 161103  crossref  isi
    3. T. Biesner, S. Biswas, W. Li, Y. Saito, A. Pustogow, M. Altmeyer, A. U. B. Wolter, B. Buechner, M. Roslova, T. Doert, S. M. Winter, R. Valenti, M. Dressel, “Detuning the honeycomb of $\alpha-\mathrm{RuCl_3}$: pressure-dependent optical studies reveal broken symmetry”, Phys. Rev. B, 97:22 (2018), 220401  crossref  isi
    4. V M. Talanov, “Two different mechanisms of metal cluster formation in the rhombohedral spinel structures: AlV$_2$O$_4$ and CuZr$_{1.86(1)}$S$_4$”, Cryst. Growth Des., 18:6 (2018), 3433–3440  crossref  isi
    5. V M. Talanov, V. B. Shirokov, L. A. Avakyan, V. M. Talanov, Kh. Sh. Borlakov, “Vanadium clusters formation in geometrically frustrated spinel oxide AlV$_2$O$_4$”, Acta Crystallogr. Sect. B-Struct. Sci.Cryst. Eng. Mat., 74:4 (2018), 337–353  crossref  isi  scopus
    6. M. A. Prosnikov, A. N. Smirnov, V. Yu. Davydov, R. V. Pisarev, N. A. Lyubochko, S. N. Barilo, “Magnetic dynamics and spin-phonon coupling in the antiferromagnet Ni$_2$NbBO$_6$”, Phys. Rev. B, 98:10 (2018), 104404  crossref  isi  scopus
    7. A. O. Mufazalova, A. S. Belozerov, V S. Streltsov, “Structural distortions favoring magnetization enhancement near the SrRuO$_3$/Sr$_2$RuO$_4$ interface”, Phys. Rev. B, 98:13 (2018), 134441  crossref  isi  scopus
    8. S. A. Nikolaev, V I. Solovyev, A. N. Ignatenko, V. Yu. Irkhin, V S. Streltsov, “Realization of the anisotropic compass model on the diamond lattice of Cu$^{2+}$ in CuAl$_2$O$_4$”, Phys. Rev. B, 98:20 (2018), 201106  crossref  isi  scopus
    9. S. V. Streltsov, “Low-dimensional ruthenates with honeycomb lattice”, Phys. Metals Metallogr., 119:13 (2018), 1276–1279  crossref  isi  scopus
    10. Harland M., Poteryaev I A., Streltsov V S., Lichtenstein I A., “Electronic Correlations and Competing Orders in Multiorbital Dimers: a Cluster Dmft Study”, Phys. Rev. B, 99:4 (2019), 045115  crossref  isi  scopus
    11. Ponosov Yu.S., Komleva E.V., Zamyatin D.A., Walton R.I., Streltsov S.V., “Raman Spectroscopy of the Low-Dimensional Antiferromagnet Srru2O6 With Large Neel Temperature”, Phys. Rev. B, 99:8 (2019), 085103  crossref  isi  scopus
    12. Revelli A., Sala M.M., Monaco G., Becker P., Bohaty L., Hermanns M., Koethe T.C., Froehlich T., Warzanowski P., Lorenz T., Streltsov S.V., van Loosdrecht P.H.M., Khomskii D.I., van den Brink J., Grueninger M., “Resonant Inelastic X-Ray Incarnation of Young'S Double-Slit Experiment”, Sci. Adv., 5:1 (2019), eaav4020  crossref  isi  scopus
    13. Takayama T., Krajewska A., Gibbs A.S., Yaresko A.N., Ishii H., Yamaoka H., Ishii K., Hiraoka N., Funnell N.P., Bull C.L., Takagi H., “Pressure-Induced Collapse of the Spin-Orbital Mott State in the Hyperhoneycomb Iridate Beta-Li2Iro3”, Phys. Rev. B, 99:12 (2019), 125127  crossref  isi  scopus
    14. Xu J., Wu F., Bao J.-K., Han F., Xiao Zh.-L., Martin I., Lyu Ya.-Ya., Wang Y.-L., Chung D.Y., Li M., Zhang W., Pearson J.E., Jiang J.S., Kanatzidis M.G., Kwok W.-K., “Orbital-Flop Induced Magnetoresistance Anisotropy in Rare Earth Monopnictide Cesb”, Nat. Commun., 10 (2019), 2875  crossref  isi
    15. Chen Q., Fan Sh., Taddei K.M., Stone M.B., Kolesnikov A.I., Cheng J., Musfeldt J.L., Zhou H., Aczel A.A., “Large Positive Zero-Field Splitting in the Cluster Magnet Ba3Ceru2O9”, J. Am. Chem. Soc., 141:25 (2019), 9928–9936  crossref  isi
    16. Thakur G.S., Reuter H., Rosner H., Fecher G.H., Felser C., Jansen M., “New Ag8Pto6: Synthesis, Crystal Structure, Physical Properties and Theoretical Analyses”, Dalton Trans., 48:15 (2019), 5058–5063  crossref  isi
    17. F. V. Temnikov, E. V. Komleva, Z. V. Pchelkina, S. V. Streltsov, “Mechanism of ferromagnetic ordering of the Mn chains in CaMnGe$_2$O$_6$ clinopyroxene”, Pisma v ZhETF, 110:9 (2019), 595–596  mathnet  crossref
  • Успехи физических наук Physics-Uspekhi
    Number of views:
    This page:235
    First page:12

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020