|
Linear programming and dynamics
Anatoly S. Antipina, Elena V. Khoroshilovab a Computing Center of RAS, Moscow, Russia
b CMC Faculty, Lomonosov Moscow State University, Moscow, Russia
Abstract:
In a Hilbert space we consider the linear boundary value problem of optimal control based on the linear dynamics and the terminal linear programming problem at the right end of the time interval. There is provided a saddle-point method to solve it. Convergence of the method is proved.
Keywords:
Linear programming, Optimal control, Boundary value problems, Methods for solving problems, Convergence, Stability.
DOI:
https://doi.org/10.15826/umj.2015.1.001
Full text:
PDF file (189 kB)
Full text:
http://umjuran.ru/.../31
References:
PDF file
HTML file
Bibliographic databases:
Language:
Citation:
Anatoly S. Antipin, Elena V. Khoroshilova, “Linear programming and dynamics”, Ural Math. J., 1:1 (2015), 3–19
Citation in format AMSBIB
\Bibitem{AntKho15}
\by Anatoly~S.~Antipin, Elena~V.~Khoroshilova
\paper Linear programming and dynamics
\jour Ural Math. J.
\yr 2015
\vol 1
\issue 1
\pages 3--19
\mathnet{http://mi.mathnet.ru/umj1}
\crossref{https://doi.org/10.15826/umj.2015.1.001}
\zmath{https://zbmath.org/?q=an:1396.49001}
\elib{https://elibrary.ru/item.asp?id=25613591}
Linking options:
http://mi.mathnet.ru/eng/umj1 http://mi.mathnet.ru/eng/umj/v1/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Translation
|
Number of views: |
This page: | 126 | Full text: | 36 | References: | 21 |
|