RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Math. J., 2020, Volume 6, Issue 1, Pages 114–129 (Mi umj115)  

A new generalized varentropy and its properties

S. Maadani, G. Mohtashami Borzadaran, A. Rezaei Roknabadi

Ferdowsi University of Mashhad

Abstract: The variance of Shannon information related to the random variable $X$, which is called varentropy, is a measurement that indicates, how the information content of $X$ is scattered around its entropy and explains its various applications in information theory, computer sciences, and statistics. In this paper, we introduce a new generalized varentropy based on the Tsallis entropy and also obtain some results and bounds for it. We compare the varentropy with the Tsallis varentropy. Moreover, we explain the Tsallis varentropy of the order statistics and analyse this concept in residual (past) lifetime distributions and then introduce two new classes of distributions by them.

Keywords: Generalized varentropy, Past Tsallis varentropy, Residual Tsallis varentropy, Tsallis varentropy, Varentropy.

DOI: https://doi.org/10.15826/umj.2020.1.009

Full text: PDF file (329 kB)
Full text: https:/.../197
References: PDF file   HTML file

Bibliographic databases:

Language:

Citation: S. Maadani, G. Mohtashami Borzadaran, A. Rezaei Roknabadi, “A new generalized varentropy and its properties”, Ural Math. J., 6:1 (2020), 114–129

Citation in format AMSBIB
\Bibitem{MaaMohRez20}
\by S.~Maadani, G.~Mohtashami Borzadaran, A.~Rezaei Roknabadi
\paper A new generalized varentropy and its properties
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 1
\pages 114--129
\mathnet{http://mi.mathnet.ru/umj115}
\crossref{https://doi.org/10.15826/umj.2020.1.009}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=MR4128764}
\elib{https://elibrary.ru/item.asp?id=43793628}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088991360}


Linking options:
  • http://mi.mathnet.ru/eng/umj115
  • http://mi.mathnet.ru/eng/umj/v6/i1/p114

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Ural Mathematical Journal
    Number of views:
    This page:19
    Full text:5
    References:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021