Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Math. J., 2020, Volume 6, Issue 1, Pages 137–146 (Mi umj117)  

On generalized eighth order mock theta functions

Pramod Kumar Rawat

University of Lucknow

Abstract: In this paper we have generalized eighth order mock theta functions, recently introduced by Gordon and MacIntosh involving four independent variables. The idea of generalizing was to have four extra parameters, which on specializing give known functions and thus these results hold for those known functions. We have represented these generalized functions as $q$-integral. Thus on specializing we have the classical mock theta functions represented as $q$-integral. The same is true for the multibasic expansion given.

Keywords: $q$-Hypergeometric series, Mock theta functions, Continued fractions, $q$-Integrals.

DOI: https://doi.org/10.15826/umj.2020.1.011

Full text: PDF file (123 kB)
Full text: https:/.../206
References: PDF file   HTML file

Bibliographic databases:

Language:

Citation: Pramod Kumar Rawat, “On generalized eighth order mock theta functions”, Ural Math. J., 6:1 (2020), 137–146

Citation in format AMSBIB
\Bibitem{Raw20}
\by Pramod~Kumar~Rawat
\paper On generalized eighth order mock theta functions
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 1
\pages 137--146
\mathnet{http://mi.mathnet.ru/umj117}
\crossref{https://doi.org/10.15826/umj.2020.1.011}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=MR4128766}
\zmath{https://zbmath.org/?q=an:1443.11046}
\elib{https://elibrary.ru/item.asp?id=43793630}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090678343}


Linking options:
  • http://mi.mathnet.ru/eng/umj117
  • http://mi.mathnet.ru/eng/umj/v6/i1/p137

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Ural Mathematical Journal
    Number of views:
    This page:18
    Full text:5
    References:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021