Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Math. J., 2020, Volume 6, Issue 2, Pages 38–43 (Mi umj124)  

Open packing number for some classes of perfect graphs

K. Raja Chandrasekara, S. Saravanakumarb

a Amrita College of Engineering and Technology, Amritagiri, Erachakulam Post, Nagercoil-629902, Tamil Nadu, India
b Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil-626126, Tamil Nadu, India

Abstract: Let $G$ be a graph with the vertex set $V(G)$. A subset $S$ of $V(G)$ is an open packing set of $G$ if every pair of vertices in $S$ has no common neighbor in $G.$ The maximum cardinality of an open packing set of $G$ is the open packing number of $G$ and it is denoted by $\rho^o(G)$. In this paper, the exact values of the open packing numbers for some classes of perfect graphs, such as split graphs, $\{P_4, C_4\}$-free graphs, the complement of a bipartite graph, the trestled graph of a perfect graph are obtained.

Keywords: open packing number, 2-packing number, perfect graphs, trestled graphs

DOI: https://doi.org/10.15826/umj.2020.2.004

Full text: PDF file (150 kB)
Full text: https:/.../255
References: PDF file   HTML file

Bibliographic databases:

Language:

Citation: K. Raja Chandrasekar, S. Saravanakumar, “Open packing number for some classes of perfect graphs”, Ural Math. J., 6:2 (2020), 38–43

Citation in format AMSBIB
\Bibitem{ChaSar20}
\by K.~Raja~Chandrasekar, S.~Saravanakumar
\paper Open packing number for some classes of perfect graphs
\jour Ural Math. J.
\yr 2020
\vol 6
\issue 2
\pages 38--43
\mathnet{http://mi.mathnet.ru/umj124}
\crossref{https://doi.org/10.15826/umj.2020.2.004}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=MR4194012}
\elib{https://elibrary.ru/item.asp?id=44611148}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099601763}


Linking options:
  • http://mi.mathnet.ru/eng/umj124
  • http://mi.mathnet.ru/eng/umj/v6/i2/p38

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Ural Mathematical Journal
    Number of views:
    This page:21
    Full text:5
    References:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021