Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Math. J., 2019, Volume 5, Issue 1, Pages 83–90 (Mi umj76)  

A new root-finding algorithm using exponential series

Srinivasarao Thota

Department of Applied Mathematics, School of Applied Natural Sciences, Adama Science and Technology University, Post Box No. 1888, Adama, Ethiopia

Abstract: In this paper, we present a new root-finding algorithm to compute a non-zero real root of the transcendental equations using exponential series. Indeed, the new proposed algorithm is based on the exponential series and in which Secant method is special case. The proposed algorithm produces better approximate root than bisection method, regula-falsi method, Newton-Raphson method and secant method. The implementation of the proposed algorithm in Matlab and Maple also presented. Certain numerical examples are presented to validate the efficiency of the proposed algorithm. This algorithm will help to implement in the commercial package for finding a real root of a given transcendental equation.

Keywords: algebraic equations, transcendental equations, exponential series, Secant method.

DOI: https://doi.org/10.15826/umj.2019.1.008

Full text: PDF file (338 kB)
References: PDF file   HTML file

Bibliographic databases:

Language:

Citation: Srinivasarao Thota, “A new root-finding algorithm using exponential series”, Ural Math. J., 5:1 (2019), 83–90

Citation in format AMSBIB
\Bibitem{Tho19}
\by Srinivasarao~Thota
\paper A new root-finding algorithm using exponential series
\jour Ural Math. J.
\yr 2019
\vol 5
\issue 1
\pages 83--90
\mathnet{http://mi.mathnet.ru/umj76}
\crossref{https://doi.org/10.15826/umj.2019.1.008}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=MR3995657}
\zmath{https://zbmath.org/?q=an:1450.65044}
\elib{https://elibrary.ru/item.asp?id=38948062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071463060}


Linking options:
  • http://mi.mathnet.ru/eng/umj76
  • http://mi.mathnet.ru/eng/umj/v5/i1/p83

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Ural Mathematical Journal
    Number of views:
    This page:138
    Full text:131
    References:8

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021