RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the YSU, Physical and Mathematial Scineces:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the YSU, Physical and Mathematial Scineces, 2009, Issue 3, Pages 3–9 (Mi uzeru229)  

Mathematics

On some formulas for the index of linear bounded operator

I. G. Khachatryan

Chair of Differential Equations YSU, Armenia

Abstract: We consider the linear bounded operator in infinite dimensional separable Hilbert space satisfying some conditions. We prove formulas that can be used to calculate the index of this operator.

Keywords: operator, index, trace, absolute norm.

Full text: PDF file (253 kB)
References: PDF file   HTML file
Received: 11.02.2009
Accepted:11.03.2009
Language:

Citation: I. G. Khachatryan, “On some formulas for the index of linear bounded operator”, Proceedings of the YSU, Physical and Mathematial Scineces, 2009, no. 3, 3–9

Citation in format AMSBIB
\Bibitem{Kha09}
\by I.~G.~Khachatryan
\paper On some formulas for the index of linear bounded operator
\jour Proceedings of the YSU, Physical and Mathematial Scineces
\yr 2009
\issue 3
\pages 3--9
\mathnet{http://mi.mathnet.ru/uzeru229}


Linking options:
  • http://mi.mathnet.ru/eng/uzeru229
  • http://mi.mathnet.ru/eng/uzeru/y2009/i3/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Proceedings of the Yerevan State University, series Physical and Mathematical sciences
    Number of views:
    This page:22
    Full text:7
    References:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019