RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the YSU, Physics & Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the YSU, Physics & Mathematics, 2018, Volume 52, Issue 2, Pages 93–100 (Mi uzeru464)  

Mathematics

On a uniqueness theorem for the Franklin system

K. A. Navasardyan

Chair of Numerical Analysis and Mathematical Modelling YSU, Armenia

Abstract: In this paper we prove that there exist a nontrivial Franklin series and a sequence$M_n$ such that the partial sums$S_{M_n}(x)$ of that series converge to 0 almost everywhere and $\lambda\cdot \mathrm{mes}\{x:sup_n|S_{M_n}(x)|>\lambda\}\to 0$ as $\lambda\to+\infty$. This shows that the boundedness assumption of the ratio $M_{n+1} /M_n$, used for the proofs of uniqueness theorems in earlier papers, can not be omitted.

Keywords: majorant of partial sums, Franklin system, uniqueness.

Full text: PDF file (171 kB)
References: PDF file   HTML file

Document Type: Article
MSC: 42C10
Received: 22.02.2018
Revised: 20.04.2018
Language: English

Citation: K. A. Navasardyan, “On a uniqueness theorem for the Franklin system”, Proceedings of the YSU, Physics & Mathematics, 52:2 (2018), 93–100

Citation in format AMSBIB
\Bibitem{Nav18}
\by K.~A.~Navasardyan
\paper On a uniqueness theorem for the Franklin system
\jour Proceedings of the YSU, Physics {\&} Mathematics
\yr 2018
\vol 52
\issue 2
\pages 93--100
\mathnet{http://mi.mathnet.ru/uzeru464}


Linking options:
  • http://mi.mathnet.ru/eng/uzeru464
  • http://mi.mathnet.ru/eng/uzeru/v52/i2/p93

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Proceedings of the Yerevan State University, series Physical and Mathematical sciences
    Number of views:
    This page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018