RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 2007, Volume 149, Book 4, Pages 146–172 (Mi uzku633)  

Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: An initial-boundary value problem is considered for a quasilinear singularly perturbed parabolic convection-diffusion equation. For such a problem, a solution of a classical difference scheme on uniform grid converges at the rate $\mathcal O((\varepsilon+N^{-1})^{-1}N^{-1}+N_0^{-1})$, where $N+1$ and $N_0+1$ are the numbers of nodes in the meshes in $x$ and $t$ respectively; the scheme converges only under the condition $N^{-1}\ll\varepsilon$. In the present paper, nonlinear and linearized finite difference schemes are constructed on a priori sequentially adapted grids, and their convergence is studied. The construction of the schemes is carried out on the basis of a majorant to the singular component of the discrete solution on uniform grids that allows us to find a priori subdomains where the computed solution requires a further improvement. Such subdomain is defined by the perturbation parameter $\varepsilon$, the step-size of a uniform mesh in $x$, and also by the required accuracy of the grid solution and the prescribed number $K$ of iterations to refine the solution. The advantage of this approach consists in the uniform meshes used. The error of the discrete solution depends weakly on the parameter $\varepsilon$. The schemes that are constructed in the iterative process converge almost $\varepsilon$-uniformly, namely, under the condition $N^{-1}\ll\varepsilon^{\nu}$, where the value $\nu=\nu(K)$ can be chosen arbitrarily small for sufficiently large $K$.

Full text: PDF file (325 kB)
References: PDF file   HTML file
UDC: 519.633

Citation: G. I. Shishkin, “Grid approximation of a singularly perturbed quasilinear parabolic convection-diffusion equation on a priori adapted meshes”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 149, no. 4, Kazan University, Kazan, 2007, 146–172

Citation in format AMSBIB
\Bibitem{Shi07}
\by G.~I.~Shishkin
\paper Grid approximation of a~singularly perturbed quasilinear parabolic convection-diffusion equation on {\it a~priori} adapted meshes
\serial Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki
\yr 2007
\vol 149
\issue 4
\pages 146--172
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku633}


Linking options:
  • http://mi.mathnet.ru/eng/uzku633
  • http://mi.mathnet.ru/eng/uzku/v149/i4/p146

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Number of views:
    This page:208
    Full text:59
    References:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020