|
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 2009, Volume 151, Book 4, Pages 36–50
(Mi uzku764)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Holomorphic Tensor Fields and Linear Connections on a Second Order Tangent Bundle
F. R. Gainullina, V. V. Shuryginb a "Itplus" Ltd.
b Chair of Geometry, Kazan State University
Abstract:
The second order tangent bundle $T^2M$ of a smooth manifold $M$ carries a natural structure of a smooth manifold over the algebra $\mathbf R(\varepsilon^2)$ of truncated polynomials of degree 2. A section $\sigma$ of $T^2M$ induces an $\mathbf R(\varepsilon^2)$-smooth diffeomorphism $\Sigma\colon T^2M\to T^2M$. Conditions are obtained under which an $\mathbf R(\varepsilon^2)$-smooth tensor field and an $\mathbf R(\varepsilon^2)$-smooth linear connection on $T^2M$ can be transfered by a diffeomorphism of the form $\Sigma$, respectively, into the lift of a tensor field and the lift of a linear connection given on $M$.
Keywords:
tangent bundle of second order, lift of a linear connection, lift of a tensor field, holomorphic connection, Lie derivative.
Full text:
PDF file (281 kB)
References:
PDF file
HTML file
UDC:
514.76 Received: 30.07.2009
Citation:
F. R. Gainullin, V. V. Shurygin, “Holomorphic Tensor Fields and Linear Connections on a Second Order Tangent Bundle”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151, no. 4, Kazan University, Kazan, 2009, 36–50
Citation in format AMSBIB
\Bibitem{GaiShu09}
\by F.~R.~Gainullin, V.~V.~Shurygin
\paper Holomorphic Tensor Fields and Linear Connections on a~Second Order Tangent Bundle
\serial Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki
\yr 2009
\vol 151
\issue 4
\pages 36--50
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku764}
Linking options:
http://mi.mathnet.ru/eng/uzku764 http://mi.mathnet.ru/eng/uzku/v151/i4/p36
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Shurygin, “Lie jets and symmetries of prolongations of geometric objects”, J. Math. Sci., 177:5 (2011), 758–771
-
A. Ya. Sultanov, O. A. Monakhova, “Affinnye preobrazovaniya v rassloeniyakh”, Geometriya, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 146, VINITI RAN, M., 2018, 48–88
|
Number of views: |
This page: | 243 | Full text: | 61 | References: | 41 |
|