RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik KRAUNC. Fiz.-Mat. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, Number 1(10), Pages 18–24 (Mi vkam17)  

This article is cited in 5 scientific papers (total in 5 papers)

MATHEMATICAL MODELING

Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction

R. I. Parovikab

a Institute of Cosmophysical Researches and Radio Wave Propagation Far-Eastern Branch, Russian Academy of Sciences, 684034, Kamchatskiy Kray, Paratunka, Mirnaya st., 7, Russia
b Vitus Bering Kamchatka State University, 683031, Petropavlovsk-Kamchatsky, Pogranichnaya st., 4, Russia

Abstract: The paper considers a nonlinear fractal oscillatory Duffing system with friction. The numerical analysis of this system by a finite-difference scheme was carried out. Phase portraits and system solutions were constructed depending on fractional parameters

Keywords: Gerasimov-Caputo operator, phase portrait, Duffing oscillator, finite-difference scheme.

DOI: https://doi.org/10.18454/2079-6641-2015-10-1-18-24

Full text: PDF file (458 kB)
Full text: http://www.ikir.ru/.../article0008.html
References: PDF file   HTML file

English version:
Bulletin KRASEC. Physical and Mathematical Sciences, 2015, 10:1, 16–21 (PDF, 381 kB); https://doi.org/10.18454/2313-0156-2015-10-1-16-21

UDC: 517.925.42
MSC: 37C70
Received: 13.04.2015

Citation: R. I. Parovik, “Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, no. 1(10), 18–24; Bulletin KRASEC. Phys. & Math. Sci., 10:1 (2015), 16–21

Citation in format AMSBIB
\Bibitem{Par15}
\by R.~I.~Parovik
\paper Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction
\jour Vestnik KRAUNC. Fiz.-Mat. Nauki
\yr 2015
\issue 1(10)
\pages 18--24
\mathnet{http://mi.mathnet.ru/vkam17}
\crossref{https://doi.org/10.18454/2079-6641-2015-10-1-18-24}
\elib{http://elibrary.ru/item.asp?id=23564564}
\transl
\jour Bulletin KRASEC. Phys. & Math. Sci.
\yr 2015
\vol 10
\issue 1
\pages 16--21
\crossref{https://doi.org/10.18454/2313-0156-2015-10-1-16-21}


Linking options:
  • http://mi.mathnet.ru/eng/vkam17
  • http://mi.mathnet.ru/eng/vkam/y2015/i1/p18

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. V. Drobysheva, “Mathematical modeling of nonlinear oscillators hereditarity example Duffing oscillator with fractional derivatives in the Riemann-Liouville”, Bulletin KRASEC. Phys. & Math. Sci., 13:2 (2016), 39–45  mathnet  crossref  crossref  mathscinet  elib
    2. V. A. Kim, “Duffing oscillator with an external harmonic impact and derived variables fractional Remann-Liouville, is characterized by viscous friction”, Bulletin KRASEC. Phys. & Math. Sci., 13:2 (2016), 46–49  mathnet  crossref  crossref  mathscinet  elib
    3. O. D. Lipko, “Matematicheskaya model rasprostraneniya nervnogo impulsa s uchetom ereditarnosti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, no. 1(17), 33–43  mathnet  crossref  mathscinet  elib
    4. E. R. Novikova, “Ostsillyator Van-der-Polya–Duffinga c effektom ereditarnosti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, no. 2(18), 65–75  mathnet  crossref  elib
    5. R. I. Parovik, “Khaoticheskie rezhimy fraktalnogo nelineinogo ostsillyatora”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:2 (2018), 364–379  mathnet  crossref  zmath  elib
  • Vestnik KRAUNC. Fiziko-Matematicheskie Nauki Vestnik KRAUNC. Fiziko-Matematicheskie Nauki
    Number of views:
    This page:113
    Full text:32
    References:67

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019