RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkaz. Mat. Zh., 2010, Volume 12, Number 3, Pages 56–66 (Mi vmj184)  

This article is cited in 4 scientific papers (total in 4 papers)

On correlation of two solution classes of Navier–Stokes equation

V. B. Levenshtamab

a South Mathematical Institute of VSC RAS, Russia, Vladikavkaz
b Southern Federal University, Faculty of Mathematics, Mechanics and Computer Sciences, Russia, Rostov-on-Don

Abstract: We consider an initial boundary value problem for Navier–Stokes equation with mass power polinomial depend on unknown (velocity). We introduce for it the definitions of solution and generalized solution and we derive the conditions, under with a generalized solution is a solution.

Key words: Navier–Stokes equation, solution, generalized solution.

Full text: PDF file (175 kB)
References: PDF file   HTML file
UDC: 517.633
Received: 14.09.2009

Citation: V. B. Levenshtam, “On correlation of two solution classes of Navier–Stokes equation”, Vladikavkaz. Mat. Zh., 12:3 (2010), 56–66

Citation in format AMSBIB
\Bibitem{Lev10}
\by V.~B.~Levenshtam
\paper On correlation of two solution classes of Navier--Stokes equation
\jour Vladikavkaz. Mat. Zh.
\yr 2010
\vol 12
\issue 3
\pages 56--66
\mathnet{http://mi.mathnet.ru/vmj184}
\elib{http://elibrary.ru/item.asp?id=15181021}


Linking options:
  • http://mi.mathnet.ru/eng/vmj184
  • http://mi.mathnet.ru/eng/vmj/v12/i3/p56

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. V. B. Levenshtam, “O vzaimosvyazi dvukh klassov reshenii uravnenii Nave–Stoksa. II”, Vladikavk. matem. zhurn., 14:4 (2012), 52–62  mathnet
    2. Ivleva N.S., Levenshtam V.B., “Asimptoticheskoe integrirovanie parabolicheskikh sistem s bolshim parametrom”, Izvestiya vysshikh uchebnykh zavedenii. severo-kavkazskii region. seriya: estestvennye nauki, 2012, no. 6, 26–31  mathscinet  elib
    3. V. B. Levenshtam, “Justification of the method of averaging for the system of equations with the Navier–Stokes operator in the principal part”, St. Petersburg Math. J., 26:1 (2015), 69–90  mathnet  crossref  mathscinet  isi  elib
    4. V. B. Levenshtam, “Asymptotic Integration of Linear Parabolic Problems with High-Frequency Coefficients in the Critical Case”, Math. Notes, 96:4 (2014), 499–513  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  • Владикавказский математический журнал
    Number of views:
    This page:229
    Full text:77
    References:46
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020