RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkaz. Mat. Zh., 2003, Volume 5, Number 4, Pages 43–49 (Mi vmj254)  

This article is cited in 2 scientific papers (total in 2 papers)

Properties of convergence in measure on Jordan algebras

I. G. Ganieva, A. K. Karimovb

a Tashkent Temir YO'L Muxandislari Instituti, Tashkent, Uzbekistan
b Tashkent Institute of Textile and Light Industry, Tashkent, Uzbekistan

Full text: PDF file (168 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517.98
Received: 25.08.2003

Citation: I. G. Ganiev, A. K. Karimov, “Properties of convergence in measure on Jordan algebras”, Vladikavkaz. Mat. Zh., 5:4 (2003), 43–49

Citation in format AMSBIB
\Bibitem{GanKar03}
\by I.~G.~Ganiev, A.~K.~Karimov
\paper Properties of convergence in measure on Jordan algebras
\jour Vladikavkaz. Mat. Zh.
\yr 2003
\vol 5
\issue 4
\pages 43--49
\mathnet{http://mi.mathnet.ru/vmj254}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2048293}
\zmath{https://zbmath.org/?q=an:1049.17027}
\elib{https://elibrary.ru/item.asp?id=11636425}


Linking options:
  • http://mi.mathnet.ru/eng/vmj254
  • http://mi.mathnet.ru/eng/vmj/v5/i4/p43

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. K. Karimov, “Convergences in JW-algebras and in their enveloping von Neumann algebras”, Siberian Adv. Math., 18:3 (2008), 176–184  mathnet  crossref  mathscinet
    2. V. P. Kondakov, A. I. Efimov, “O klassakh prostranstv Këte, v kotorykh kazhdoe dopolnyaemoe podprostranstvo imeet bazis”, Vladikavk. matem. zhurn., 10:2 (2008), 21–29  mathnet  mathscinet  elib
  • Владикавказский математический журнал
    Number of views:
    This page:132
    Full text:54
    References:29
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021