RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkaz. Mat. Zh., 2011, Volume 13, Number 4, Pages 28–34 (Mi vmj399)  

This article is cited in 1 scientific paper (total in 1 paper)

On extension of regular homogeneous orthogonally additive polynomials

Z. A. Kusraeva

South Mathematical Institute of VSC RAS, Vladikavkaz, Russia

Abstract: A homogeneous polynomial is said to be positive if the generating symmetric multilinear operator is positive and regular if it is representable as the difference of two positive polynomials. A polynomial $P$ is orthogonally additive if $P(x+y)=P(x)+P(y)$ for disjoint $x$ and $y$. Let $\mathscr P^r_\mathrm{oa}(^sE,F)$ and $\mathscr E(P)$ stand for the sets of all regular $s$-homogeneous orthogonally additive polynomials from $E$ to $F$ and of all positive orthogonally additive $s$-homogeneous extensions of a positive polynomial $P\in\mathscr P^r_\mathrm{oa}(^sE,F)$. The following two theorems are the main results of the article. All vector lattices are assumed to be Archimedean.
Theorem 4. {\it Let $G$ be a majorizing sublattice of a vector lattice $E$ and $F$ be a Dedekind complete vector lattice. Then there exists an order continuous lattice homomorphism $\widehat{\mathscr E}\colon\mathscr P_\mathrm{oa}^r(^sG,F)\to\mathscr P_\mathrm{oa}^r(^sE,F)$ (a “simultaneous extension” operator) such that $\mathscr R_p\circ\widehat{\mathscr E}=I$, where $I$ is the identity operator in $\mathscr P^r_\mathrm{oa}(^sG,F)$.}
Theorem 6. Let $E,F$ and $G$ be vector lattices with $F$ Dedekind complete, $E$ and $G$ uniformly complete, $G$ sublattice of $E$. Assume that the set $\mathscr E(P)$ is nonempty for a positive orthogonally additive $s$-homogeneous polynomial $P\colon E\to F$. A polynomial $\widehat P\in\mathscr E(P)$ is an extreme point of $\mathscr E(P)$ if and only if
$$ \inf\{\widehat P(|(x^s+u^s)^{\frac1s}|)\colon u\in G\}=0\quad(x\in E).$$


Key words: vector lattice, homogeneous polynomial, positive multilinear operator, regular polynomial, orthogonal additivity, extreme extension.

Full text: PDF file (170 kB)
References: PDF file   HTML file
UDC: 517.98
Received: 10.10.2010

Citation: Z. A. Kusraeva, “On extension of regular homogeneous orthogonally additive polynomials”, Vladikavkaz. Mat. Zh., 13:4 (2011), 28–34

Citation in format AMSBIB
\Bibitem{Kus11}
\by Z.~A.~Kusraeva
\paper On extension of regular homogeneous orthogonally additive polynomials
\jour Vladikavkaz. Mat. Zh.
\yr 2011
\vol 13
\issue 4
\pages 28--34
\mathnet{http://mi.mathnet.ru/vmj399}


Linking options:
  • http://mi.mathnet.ru/eng/vmj399
  • http://mi.mathnet.ru/eng/vmj/v13/i4/p28

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Z. A. Kusraeva, “Kharakterizatsiya i multiplikativnoe predstavlenie odnorodnykh polinomov, sokhranyayuschikh diz'yunktnost”, Vladikavk. matem. zhurn., 18:1 (2016), 51–62  mathnet
  • Владикавказский математический журнал
    Number of views:
    This page:165
    Full text:52
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020