RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkaz. Mat. Zh., 2011, Volume 13, Number 4, Pages 40–51 (Mi vmj401)  

This article is cited in 3 scientific papers (total in 3 papers)

A non-classical formula for integration by parts related to Goursat problem for a pseudoparabolic equation

I. G. Mamedov

Institute of Cybernetics named after Academician A. Huseynov, National Academy of Sciences of Aserbaijan, Baku, Aserbaijan

Abstract: A formula for integration by parts of non-classical type is derived and an application to Goursat problem for the pseudoparabolic equation with non-smooth coefficients and with dominated derivatives of fourth order is find.

Key words: Goursat problem, differential equations with non-smooth coefficients, generalized Riemann function, integral representation of solution.

Full text: PDF file (163 kB)
References: PDF file   HTML file
UDC: 517.956
Received: 18.02.2011

Citation: I. G. Mamedov, “A non-classical formula for integration by parts related to Goursat problem for a pseudoparabolic equation”, Vladikavkaz. Mat. Zh., 13:4 (2011), 40–51

Citation in format AMSBIB
\Bibitem{Mam11}
\by I.~G.~Mamedov
\paper A non-classical formula for integration by parts related to Goursat problem for a~pseudoparabolic equation
\jour Vladikavkaz. Mat. Zh.
\yr 2011
\vol 13
\issue 4
\pages 40--51
\mathnet{http://mi.mathnet.ru/vmj401}


Linking options:
  • http://mi.mathnet.ru/eng/vmj401
  • http://mi.mathnet.ru/eng/vmj/v13/i4/p40

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Chernov, “O totalnom sokhranenii globalnoi razreshimosti zadachi Gursa dlya upravlyaemogo polulineinogo psevdoparabolicheskogo uravneniya”, Vladikavk. matem. zhurn., 16:3 (2014), 55–63  mathnet
    2. I. G. Mamedov, “O neklassicheskoi traktovke chetyrekhmernoi zadachi Gursa dlya odnogo giperbolicheskogo uravneniya”, Vladikavk. matem. zhurn., 17:4 (2015), 59–66  mathnet
    3. E. A. Sozontova, “K usloviyam razreshimosti zadachi Gursa v kvadraturakh dlya dvumernoi sistemy vysokogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:1 (2017), 94–111  mathnet  crossref  elib
  • Владикавказский математический журнал
    Number of views:
    This page:736
    Full text:140
    References:70
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019