Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkaz. Mat. Zh., 2014, Volume 16, Number 3, Pages 38–46 (Mi vmj511)  

This article is cited in 4 scientific papers (total in 4 papers)

Basis property of the Haar system in weighted variable exponent Lebesgue spaces

M. G. Magomed-Kasumov

South Mathematical Institute of VSC RAS, Vladikavkaz, Russia

Abstract: Sufficient conditions for Haar system to be a basis in weighted variable exponent Lebesgue spaces were found.

Key words: variable exponent Lebesgue spaces, weighted spaces, Haar system, basis property, Muckenhoupt condition, log-Hölder condition.

Full text: PDF file (225 kB)
References: PDF file   HTML file
UDC: 517.521
Received: 25.06.2013

Citation: M. G. Magomed-Kasumov, “Basis property of the Haar system in weighted variable exponent Lebesgue spaces”, Vladikavkaz. Mat. Zh., 16:3 (2014), 38–46

Citation in format AMSBIB
\Bibitem{Mag14}
\by M.~G.~Magomed-Kasumov
\paper Basis property of the Haar system in weighted variable exponent Lebesgue spaces
\jour Vladikavkaz. Mat. Zh.
\yr 2014
\vol 16
\issue 3
\pages 38--46
\mathnet{http://mi.mathnet.ru/vmj511}


Linking options:
  • http://mi.mathnet.ru/eng/vmj511
  • http://mi.mathnet.ru/eng/vmj/v16/i3/p38

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. G. Magomed-Kasumov, “Priblizhenie funktsii summami Khaara v vesovykh prostranstvakh Lebega i Soboleva s peremennym pokazatelem”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:3 (2014), 295–304  mathnet  crossref  elib
    2. T. N. Shakh-Emirov, “O ravnomernoi ogranichennosti nekotorykh semeistv integralnykh operatorov svertki v vesovykh prostranstvakh Lebega s peremennym pokazatelem”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(1) (2014), 422–427  mathnet  crossref  elib
    3. T. N. Shakh-Emirov, “O ravnomernoi ogranichennosti semeistva sdvigov funktsii Steklova v vesovykh prostranstvakh Lebega s peremennym pokazatelem”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 93–99  mathnet  crossref
    4. D. M. Israfilov, A. Testici, “Approximation problems in the Lebesgue spaces with variable exponent”, J. Math. Anal. Appl., 459:1 (2018), 112–123  crossref  mathscinet  zmath  isi  scopus
  • Владикавказский математический журнал
    Number of views:
    This page:164
    Full text:70
    References:17

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021