RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkaz. Mat. Zh., 2016, Volume 18, Number 1, Pages 9–20 (Mi vmj567)  

This article is cited in 1 scientific paper (total in 1 paper)

On the existence of a basis in a complemented subspace of a nuclear Köthe space of type $d_2$

A. K. Dronov

Rostov State Economical University, Rostov-on-Don, Russia

Abstract: The existence of a basis in a complemented subspace of a nuclear Köthe space of the class $d_2$ is proved. It is also shown that in each such subspace there is a basis quasiequivalent to the part of the basis of orts.

Key words: Pelczynski hypothesis, Köthe space, basis, complemented subspace, cone, interpolation.

Full text: PDF file (238 kB)
References: PDF file   HTML file
UDC: 519.652
Received: 23.10.2014

Citation: A. K. Dronov, “On the existence of a basis in a complemented subspace of a nuclear Köthe space of type $d_2$”, Vladikavkaz. Mat. Zh., 18:1 (2016), 9–20

Citation in format AMSBIB
\Bibitem{Dro16}
\by A.~K.~Dronov
\paper On the existence of a~basis in a~complemented subspace of a~nuclear K\"othe space of type~$d_2$
\jour Vladikavkaz. Mat. Zh.
\yr 2016
\vol 18
\issue 1
\pages 9--20
\mathnet{http://mi.mathnet.ru/vmj567}


Linking options:
  • http://mi.mathnet.ru/eng/vmj567
  • http://mi.mathnet.ru/eng/vmj/v18/i1/p9

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Kaplitskii, A. K. Dronov, “To the theory of operators that are bounded on cones in weighted spaces of numerical sequences, II”, J. Math. Sci. (N. Y.), 234:3 (2018), 338–342  mathnet  crossref
  • Владикавказский математический журнал
    Number of views:
    This page:212
    Full text:64
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020