RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkaz. Mat. Zh., 2016, Volume 18, Number 1, Pages 51–62 (Mi vmj572)  

This article is cited in 1 scientific paper (total in 1 paper)

Characterization and multiplicative representation of homogeneous disjointness preserving polynomials

Z. A. Kusraeva

Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz, Russia

Abstract: Let $E$ and $F$ be vector lattices and $P\colon E\to F$ an order bounded orthogonally additive (i.e. $|x|\wedge|y|=0$ implies $P(x+y)=P(x)+P(y)$ for all $x,y\in E$) $s$-homogeneous polynomial. $P$ is said to be disjointness preserving if its corresponding symmetric $s$-linear operator from $E^s$ to $F$ is disjointness preserving in each variable. The main results of the paper read as follows:
Theorem 3.9. The following are equivalent: (1) $P$ is disjointness preserving; (2) $\hat d^nP(x)(y)=0$ and $Px\perp Py$ for all $x,y\in E$, $x\perp y$, and $1\leq n<s$; (3) $P$ is orthogonally additive and $x\perp y$ implies $Px\perp Py$ for all $x,y\in E$; (4) {\it there exist a vector lattice $G$ and lattice homomorphisms $S_1,S_2\colon E \to G$ such that $G^{s\scriptscriptstyle\odot}\subset F$, $S_1(E)\perp S_2(E)$, and $Px=(S_1x)^{s\scriptscriptstyle\odot}-(S_2x)^{s\scriptscriptstyle\odot}$ for all $x\in E$}; (5) {\it there exists an order bounded disjointness preserving linear operator $T:E^{s\scriptscriptstyle\odot}\to F$ such that $Px=T(x^{s\scriptscriptstyle\odot})$ for all $x\in E$}.
Theorem 4.7. {\it Let $E$ and $F$ be Dedekind complete vector lattices. There exists a partition of unity $(\rho_\xi)_{\xi\in\Xi}$ in the Boolean algebra of band projections $\mathfrak P(F)$ and a family $(e_\xi)_{\xi\in\Xi}$ in $E_+$ such that $P(x)=o$-$\sum_{\xi\in\Xi}W\circ\rho_\xi S(x/e_\xi)^{s\scriptscriptstyle\odot}$ $(x\in E)$, where $S$ is the shift of $P$ and $W\colon\mathscr F\to\mathscr F$ is the orthomorphism multiplication by $o$-$\sum_{\xi\in\Xi}\rho_\xi P(e_\xi)$.

Key words: power of a vector lattice, homogeneous polynomial, disjointness preserving polynomial, orthogonal additivity, lattice polymorphism, multiplicative representation.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-51-53119 ГФЕН-а


Full text: PDF file (323 kB)
References: PDF file   HTML file
UDC: 517.98
MSC: 46A40, 47H60, 47H07
Received: 13.01.2016

Citation: Z. A. Kusraeva, “Characterization and multiplicative representation of homogeneous disjointness preserving polynomials”, Vladikavkaz. Mat. Zh., 18:1 (2016), 51–62

Citation in format AMSBIB
\Bibitem{Kus16}
\by Z.~A.~Kusraeva
\paper Characterization and multiplicative representation of homogeneous disjointness preserving polynomials
\jour Vladikavkaz. Mat. Zh.
\yr 2016
\vol 18
\issue 1
\pages 51--62
\mathnet{http://mi.mathnet.ru/vmj572}


Linking options:
  • http://mi.mathnet.ru/eng/vmj572
  • http://mi.mathnet.ru/eng/vmj/v18/i1/p51

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Z. A. Kusraeva, “Powers of quasi-Banach lattices and orthogonally additive polynomials”, J. Math. Anal. Appl., 458:1 (2018), 767–780  crossref  mathscinet  zmath  isi  scopus
  • Владикавказский математический журнал
    Number of views:
    This page:134
    Full text:50
    References:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020