  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Vladikavkaz. Mat. Zh.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Vladikavkaz. Mat. Zh., 2017, Volume 19, Number 1, Pages 26–29 (Mi vmj604)  Cyclical elementary nets

N. A. Dzhusoeva, R. Y. Dryaeva

North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz

Abstract: Let $R$ be a commutative ring with the unit and $n\in\mathbb{N}$. A set $\sigma = (\sigma_{ij})$, $1\leqslant{i, j} \leqslant{n},$ of additive subgroups of the ring $R$ is a net over $R$ of order $n$, if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}}$ for all $1\leqslant i, r, j\leqslant n$. A net which doesn't contain the diagonal is called an elementary net. An elementary net $\sigma = (\sigma_{ij}), 1\leqslant{i\neq{j} \leqslant{n}}$, is complemented, if for some additive subgroups $\sigma_{ii}$ of $R$ the set $\sigma = (\sigma_{ij}), 1\leqslant{i, j} \leqslant{n}$ is a full net. An elementary net $\sigma$ is called closed, if the elementary group $E(\sigma) = \langle t_{ij}(\alpha) : \alpha\in \sigma_{ij}, 1\leqslant{i\neq{j}} \leqslant{n}\rangle$ doesn't contain elementary transvections. It is proved that the cyclic elementary odd-order nets are complemented. In particular, all such nets are closed. It is also shown that for every odd $n\in\mathbb{N}$ there exists an elementary cyclic net which is not complemented.

Key words: intermediate subgroup, non-split maximal torus, net, cyclic net, net group, elementary group, transvection.

 Funding Agency Grant Number Ministry of Education and Science of the Russian Federation 115033020013 Full text: PDF file (175 kB) References: PDF file   HTML file
UDC: 519.46

Citation: N. A. Dzhusoeva, R. Y. Dryaeva, “Cyclical elementary nets”, Vladikavkaz. Mat. Zh., 19:1 (2017), 26–29 Citation in format AMSBIB
\Bibitem{DzhDry17} \by N.~A.~Dzhusoeva, R.~Y.~Dryaeva \paper Cyclical elementary nets \jour Vladikavkaz. Mat. Zh. \yr 2017 \vol 19 \issue 1 \pages 26--29 \mathnet{http://mi.mathnet.ru/vmj604} 

 SHARE:      •  Contact us: math-net2020_07 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020