Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkaz. Mat. Zh., 2017, Volume 19, Number 2, Pages 11–17 (Mi vmj612)  

On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$

A. K. Gutnovaa, A. A. Makhnevb

a North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Abstract: J. Koolen posed the problem of studying distance-regular graphs in which neighborhoods of vertices are strongly regular graphs with the second eigenvalue $\leq t$ for a given positive integer $t$. This problem is reduced to the description of distance-regular graphs in which neighborhoods of vertices are strongly regular graphs with non-principal eigenvalue $t$ for $t =1,2,\ldots$ Let $\Gamma$ be a distance regular graph of diameter $3$ with eigenvalues $\theta_0>\theta_1>\theta_2>\theta_3$. If $\theta_2= -1$, then by Proposition 4.2.17 from the book «Distance-Regular Graphs» (Brouwer A. E., Cohen A. M., Neumaier A.) the graph $\Gamma_3$ is strongly regular and $\Gamma$ is an antipodal graph if and only if $\Gamma_3$ is a coclique. Let $\Gamma$ be a distance-regular graph and the graphs $\Gamma_2$, $\Gamma_3$ are strongly regular. If $k <44$, then $\Gamma$ has an intersection array $\{19,12,5; 1,4,15\}$, $\{35,24,8; 1,6,28\}$ or $\{39,30,4; 1,5,36\}$. In the first two cases the graph does not exist according to the works of Degraer J. «Isomorph-free exhaustive generation algorithms for association schemes» and Jurisic A., Vidali J. «Extremal 1-codes in distance-regular graphs of diameter 3». In this paper we found the possible automorphisms of a distance regular graph with an array of intersections $\{39,30,4; 1,5,36\}$.

Key words: regular graph, symmetric graph, distance-regular graph, automorphism groups of graph.

Funding Agency Grant Number
Russian Science Foundation 15-11-10025
Ministry of Education and Science of the Russian Federation 02.A03.21.0006


Full text: PDF file (224 kB)
References: PDF file   HTML file
UDC: 519.17
Received: 20.12.2016

Citation: A. K. Gutnova, A. A. Makhnev, “On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$”, Vladikavkaz. Mat. Zh., 19:2 (2017), 11–17

Citation in format AMSBIB
\Bibitem{GutMak17}
\by A.~K.~Gutnova, A.~A.~Makhnev
\paper On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$
\jour Vladikavkaz. Mat. Zh.
\yr 2017
\vol 19
\issue 2
\pages 11--17
\mathnet{http://mi.mathnet.ru/vmj612}


Linking options:
  • http://mi.mathnet.ru/eng/vmj612
  • http://mi.mathnet.ru/eng/vmj/v19/i2/p11

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Владикавказский математический журнал
    Number of views:
    This page:115
    Full text:35
    References:23

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021