RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkaz. Mat. Zh., 2018, Volume 20, Number 4, Pages 76–91 (Mi vmj679)  

Convergence of the Lagrange–Sturm–Liouville processes for continuous functions of bounded variation

A. Yu. Trynin

Saratov State University, 83 Astrakhanskaya Str., Saratov 410012, Russia

Abstract: The uniform convergence within an interval $(a,b)\subset [0,\pi]$ of Lagrange processes in eigenfunctions $L_n^{SL}(f,x)=\sum\nolimits_{k=1}^{n}f(x_{k,n})\frac{U_n(x)}{U_{n}'(x_{k,n})(x-x_{k,n})}$ of the Sturm–Liouville problem is established. (Here $0<x_{1,n}<x_{2,n}<…<x_{n,n}<\pi$ denote the zeros of the eigenfunction $U_n$ of the Sturm–Liouville problem.) A continuous functions $f$ on $[0,\pi]$ which is of bounded variation on $(a,b)\subset [0,\pi]$ can be uniformly approximated within the interval $(a,b)\subset [0,\pi]$. A criterion for uniform convergence within an interval $(a,b)$ of the constructed interpolation processes is obtained in terms of the maximum of the sum of the moduli of divided differences of the function $f$. Outside the interval $(a, b)$, the Lagrange interpolation process may diverge. The boundedness in the totality of the Lagrange fundamental functions constructed from eigenfunctions of the Sturm–Liouville problem is established. The case of the regular Sturm–Liouville problem with a continuous potential of bounded variation is also considered. The boundary conditions for the third kind Sturm–Liouville problem without Dirichlet conditions are studied. In the presence of service functions for calculating the eigenfunctions of the regular Sturm–Liouville problem, the Lagrange–Sturm–Liouville operator under study is easily implemented by computer technology.

Key words: uniform convergence, sinc approximations, bounded variation, Lagrange–Sturm–Liouville processes.

DOI: https://doi.org/10.23671/VNC.2018.4.23390

Full text: PDF file (331 kB)
References: PDF file   HTML file

UDC: 517.518.85
MSC: 41A05, 41A58, 94A12
Received: 13.06.2017

Citation: A. Yu. Trynin, “Convergence of the Lagrange–Sturm–Liouville processes for continuous functions of bounded variation”, Vladikavkaz. Mat. Zh., 20:4 (2018), 76–91

Citation in format AMSBIB
\Bibitem{Try18}
\by A.~Yu.~Trynin
\paper Convergence of the Lagrange--Sturm--Liouville processes for continuous functions of bounded variation
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 4
\pages 76--91
\mathnet{http://mi.mathnet.ru/vmj679}
\crossref{https://doi.org/10.23671/VNC.2018.4.23390}


Linking options:
  • http://mi.mathnet.ru/eng/vmj679
  • http://mi.mathnet.ru/eng/vmj/v20/i4/p76

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Владикавказский математический журнал
    Number of views:
    This page:45
    Full text:16
    References:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019