Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkaz. Mat. Zh., 2020, Volume 22, Number 4, Pages 87–91 (Mi vmj746)  

On the structure of elementary nets over quadratic fields

V. A. Koibaevab

a Southern Mathematical Institute VSC RAS, 22 Markus St., Vladikavkaz 362027, Russia
b North-Ossetian State University after K. L. Khetagurov, 44 Vatutina St., Vladikavkaz 362025, Russia

Abstract: The structure of elementary nets over quadratic fields is studied. A set of additive subgroups $\sigma=(\sigma_{ij})$, $1\leq i,j\leq n$, of a ring $R$ is called a net of order $n$ over $R$ if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}} $ for all $i$, $r$, $j$. The same system, but without the diagonal, is called elementary net (elementary carpet). An elementary net $\sigma=(\sigma_{ij})$ is called irreducible if all additive subgroups $\sigma_{ij}$ are different from zero. Let $K=\mathbb{Q} (\sqrt{d} )$ be a quadratic field, $D$ a ring of integers of the quadratic field $K$, $\sigma = (\sigma_{ij})$ an irreducible elementary net of order $n\geq 3$ over $K$, and $\sigma_{ij}$ a $D$-modules. If the integer $d$ takes one of the following values (22 fields): $-1$, $-2$, $-3$, $-7$, $-11$, $-19$, $2$, $3$, $5$, $6$, $7$, $11$, $13$, $17$, $19$, $21$, $29$, $33$, $37$, $41$, $57$, $73$, then for some intermediate subring $P$, $D\subseteq P\subseteq K$, the net $\sigma$ is conjugated by a diagonal matrix of $D(n, K)$ with an elementary net of ideals of the ring $P$.

Key words: net, carpet, elementary net, closed net, algebraic number field, quadratic field.

DOI: https://doi.org/10.46698/h3104-8810-6070-x

Full text: PDF file (204 kB)
References: PDF file   HTML file

UDC: 512.5
MSC: 20G15
Received: 09.08.2020

Citation: V. A. Koibaev, “On the structure of elementary nets over quadratic fields”, Vladikavkaz. Mat. Zh., 22:4 (2020), 87–91

Citation in format AMSBIB
\Bibitem{Koi20}
\by V.~A.~Koibaev
\paper On the structure of elementary nets over quadratic fields
\jour Vladikavkaz. Mat. Zh.
\yr 2020
\vol 22
\issue 4
\pages 87--91
\mathnet{http://mi.mathnet.ru/vmj746}
\crossref{https://doi.org/10.46698/h3104-8810-6070-x}


Linking options:
  • http://mi.mathnet.ru/eng/vmj746
  • http://mi.mathnet.ru/eng/vmj/v22/i4/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Владикавказский математический журнал
    Number of views:
    This page:39
    Full text:13

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021