Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Num. Meth. Prog., 2013, Volume 14, Issue 3, Pages 269–278 (Mi vmp113)  

This article is cited in 1 scientific paper (total in 1 paper)

Вычислительные методы и приложения

Methods of mesh deformation for FSI problems

S. P. Kopysov, I. M. Kuz'min, L. E. Tonkov

Institute of Mechanics, Ural Branch of RAS, Izhevsk

Abstract: A number of methods for mesh deformation in the simulation of fluid-structure interaction (FSI) are considered. The FSI problems are solved in arbitrary Lagrangian–Eulerian formulation. The capabilities of meshless interpolation algorithms for mesh node movements that provide a large deformation without degeneration of cells are analyzed.

Keywords: fluid-structure interaction; mesh deformation; Shepard method; radial basis functions; parallel computing.

Full text: PDF file (17488 kB)
UDC: 519.65
Received: 25.04.2013

Citation: S. P. Kopysov, I. M. Kuz'min, L. E. Tonkov, “Methods of mesh deformation for FSI problems”, Num. Meth. Prog., 14:3 (2013), 269–278

Citation in format AMSBIB
\Bibitem{KopKuzTon13}
\by S.~P.~Kopysov, I.~M.~Kuz'min, L.~E.~Tonkov
\paper Methods of mesh deformation for FSI problems
\jour Num. Meth. Prog.
\yr 2013
\vol 14
\issue 3
\pages 269--278
\mathnet{http://mi.mathnet.ru/vmp113}


Linking options:
  • http://mi.mathnet.ru/eng/vmp113
  • http://mi.mathnet.ru/eng/vmp/v14/i3/p269

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. S. Karavaev, S. P. Kopysov, I. M. Kuzmin, “Metod konservativnoi interpolyatsii na nestykuyuschikhsya poverkhnostnykh setkakh”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, no. 4, 64–75  mathnet
  • Numerical methods and programming
    Number of views:
    This page:100
    Full text:63

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022