Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Num. Meth. Prog., 2014, Volume 15, Issue 2, Pages 183–200 (Mi vmp241)  

This article is cited in 2 scientific papers (total in 2 papers)

An algebraic multigrid method in problems of computational physics

K. N. Volkova, Yu. N. Deryuginb, V. N. Emelyanova, A. S. Kozelkovb, I. V. Teterinaa

a Baltic State Technical University, St. Petersburg
b Federal State Unitary Enterprise "Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics", Sarov, Nizhny Novgorod region

Abstract: Implementation features and application of the algebraic multigrid methods to the solution of systems of difference equations resulting from the discretization of partial differential equations are considered. A number of approaches to the generation of C/F coarsening (standard coarsening and RS-coarsening), to the interpolation (direct interpolation, indirect interpolation, standard interpolation, and amg1r5 interpolation), and to the smoothing (iterative schemes) are discussed. Different storing formats for sparse matrices are used to calculate the Galerkin products. The results of numerical solving several model equations of mathematical physics are reported. The efficiency of the proposed approach is compared when using different components of the computational procedure.

Keywords: multigrid methods, interpolation, smoothing, computational physics.

Full text: PDF file (1689 kB)
UDC: 532.529
Received: 23.02.2014

Citation: K. N. Volkov, Yu. N. Deryugin, V. N. Emelyanov, A. S. Kozelkov, I. V. Teterina, “An algebraic multigrid method in problems of computational physics”, Num. Meth. Prog., 15:2 (2014), 183–200

Citation in format AMSBIB
\Bibitem{VolDerEme14}
\by K.~N.~Volkov, Yu.~N.~Deryugin, V.~N.~Emelyanov, A.~S.~Kozelkov, I.~V.~Teterina
\paper An algebraic multigrid method in problems of computational physics
\jour Num. Meth. Prog.
\yr 2014
\vol 15
\issue 2
\pages 183--200
\mathnet{http://mi.mathnet.ru/vmp241}


Linking options:
  • http://mi.mathnet.ru/eng/vmp241
  • http://mi.mathnet.ru/eng/vmp/v15/i2/p183

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. N. Volkov, A. S. Kozelkov, S. V. Lashkin, N. V. Tarasova, A. V. Yalozo, “A parallel implementation of the algebraic multigrid method for solving problems in dynamics of viscous incompressible fluid”, Comput. Math. Math. Phys., 57:12 (2017), 2030–2046  mathnet  crossref  crossref  isi  elib
    2. A. S. Kozelkov, S. V. Lashkin, A. A. Kurkin, A. V. Kornev, A. M. Vyalykh, “Parallelnaya realizatsiya metoda SIMPLE na osnove mnogosetochnogo metoda”, Sib. zhurn. vychisl. matem., 23:1 (2020), 1–22  mathnet  crossref
  • Numerical methods and programming
    Number of views:
    This page:370
    Full text:190

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021