Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Num. Meth. Prog., 2014, Volume 15, Issue 4, Pages 621–630 (Mi vmp278)  

A contour-advective semi-Lagrangian numerical algorithm for the problem of interaction between a vortex and an isolated topographic feature on a $\beta$-plane

A. A. Baranova, M. S. Permyakovb

a Far Eastern Federal University, Vladivostok
b V. I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch of RAS, Vladivostok

Abstract: The main stages of a contour-advective semi-Lagrangian algorithm for the simulation of inviscid incompressible flows with variable depth on the rotating Earth are considered. The numerical results for the case when a vortex encounters an axisymmetric topographic feature on a $\beta$-plane are discussed. The accuracy of the method for different values of the its parameters is numerically estimated. The contour-advective method is compared with the finite-difference method. It is shown that the contour-advective semi-Lagrangian algorithm is very efficient to represent a fine-scale structures of potential vorticity fields.

Keywords: geophysical fluid dynamics, contour dynamics, contour advection, topography, $\beta$-plane, potential vorticity.

Full text: PDF file (1559 kB)
UDC: 519.6; 532.5; 551.465
Received: 15.09.2014

Citation: A. A. Baranov, M. S. Permyakov, “A contour-advective semi-Lagrangian numerical algorithm for the problem of interaction between a vortex and an isolated topographic feature on a $\beta$-plane”, Num. Meth. Prog., 15:4 (2014), 621–630

Citation in format AMSBIB
\Bibitem{BarPer14}
\by A.~A.~Baranov, M.~S.~Permyakov
\paper A contour-advective semi-Lagrangian numerical algorithm for the problem of interaction between a vortex and an isolated topographic feature on a $\beta$-plane
\jour Num. Meth. Prog.
\yr 2014
\vol 15
\issue 4
\pages 621--630
\mathnet{http://mi.mathnet.ru/vmp278}


Linking options:
  • http://mi.mathnet.ru/eng/vmp278
  • http://mi.mathnet.ru/eng/vmp/v15/i4/p621

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Numerical methods and programming
    Number of views:
    This page:109
    Full text:54

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022