Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Num. Meth. Prog., 2010, Volume 11, Issue 3, Pages 261–268 (Mi vmp318)  

Вычислительные методы и приложения

The fundamental matrix for the Jacobi equation with random coefficients

E. A. Mikhaylova, D. D. Sokoloffb, V. N. Tutubalinc

a Lomonosov Moscow State University, Faculty of Physics
b Lomonosov Moscow State University, Research Computing Center
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A numerical simulation of the fundamental matrix for the Jacobi equation with random curvature is performed. The results are given for the two representations of the fundamental matrix. The first one is specified by the physical interpretation of the solution, whereas the second one is due to the characteristics of the matrix itself. The specific features of these representations are discussed. The behavior of the fundamental matrix corresponds to the main theoretical concepts based on the known theorems concerning the product of large numbers of unimodular random matrices and sometimes complements these concepts.

Keywords: fundamental matrix; random coefficients; Jacobi equation.

Full text: PDF file (353 kB)
UDC: 519.246.8

Citation: E. A. Mikhaylov, D. D. Sokoloff, V. N. Tutubalin, “The fundamental matrix for the Jacobi equation with random coefficients”, Num. Meth. Prog., 11:3 (2010), 261–268

Citation in format AMSBIB
\Bibitem{MikSokTut10}
\by E.~A.~Mikhaylov, D.~D.~Sokoloff, V.~N.~Tutubalin
\paper The fundamental matrix for the Jacobi equation with random coefficients
\jour Num. Meth. Prog.
\yr 2010
\vol 11
\issue 3
\pages 261--268
\mathnet{http://mi.mathnet.ru/vmp318}


Linking options:
  • http://mi.mathnet.ru/eng/vmp318
  • http://mi.mathnet.ru/eng/vmp/v11/i3/p261

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Numerical methods and programming
    Number of views:
    This page:128
    Full text:58

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022