Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Num. Meth. Prog., 2015, Volume 16, Issue 1, Pages 86–93 (Mi vmp521)  

This article is cited in 1 scientific paper (total in 1 paper)

Parallel forming of preconditioners based on the approximation of the Sherman-Morrison inversion formula

N. S. Nedozhogin, S. P. Kopysov, A. K. Novikov

Institute of Mechanics, Ural Branch of RAS, Izhevsk

Abstract: Acceleration of preconditioned bi-conjugate gradient stabilized (BiCGStab) methods with preconditioners based on the matrix approximation by the Sherman-Morrison inversion formula is studied. A new form of the parallel algorithm using matrix-vector products to generate preconditioning matrices is proposed. A parallelization efficiency of the most resource-intensive operations of such preconditioners on multi-core central and graphics processing units (CPUs and GPUs) is shown.

Keywords: linear systems, explicit preconditioning, Sherman-Morrison formula, parallel computing, graphics accelerators.

Full text: PDF file (217 kB)
UDC: 519.612
Received: 24.01.2015

Citation: N. S. Nedozhogin, S. P. Kopysov, A. K. Novikov, “Parallel forming of preconditioners based on the approximation of the Sherman-Morrison inversion formula”, Num. Meth. Prog., 16:1 (2015), 86–93

Citation in format AMSBIB
\Bibitem{NedKopNov15}
\by N.~S.~Nedozhogin, S.~P.~Kopysov, A.~K.~Novikov
\paper Parallel forming of preconditioners based on the approximation of the Sherman-Morrison inversion formula
\jour Num. Meth. Prog.
\yr 2015
\vol 16
\issue 1
\pages 86--93
\mathnet{http://mi.mathnet.ru/vmp521}


Linking options:
  • http://mi.mathnet.ru/eng/vmp521
  • http://mi.mathnet.ru/eng/vmp/v16/i1/p86

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. S. Nedozhogin, S. P. Kopysov, A. K. Novikov, “Variant parallelnogo razlozheniya v predobuslavlivatele AISM”, Izv. IMI UdGU, 2015, no. 2(46), 120–126  mathnet  elib
  • Numerical methods and programming
    Number of views:
    This page:85
    Full text:34

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022