Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Num. Meth. Prog., 2012, Volume 13, Issue 4, Pages 479–490 (Mi vmp54)  

This article is cited in 1 scientific paper (total in 1 paper)

Вычислительные методы и приложения

A third-order numerical method for solving nonautonomous additive stiff problems

E. A. Novikov

Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk

Abstract: An additive method of third-order accuracy for solving nonautonomous stiff systems of ordinary differential equations is proposed. A number of inequalities for the accuracy and stability control of the numerical scheme are obtained. Some numerical results obtained for a ring modulator are discussed.

Keywords: stiff problem; additive method; accuracy and stability control; ring modulator.

Full text: PDF file (199 kB)
UDC: 519.622
Received: 03.09.2012

Citation: E. A. Novikov, “A third-order numerical method for solving nonautonomous additive stiff problems”, Num. Meth. Prog., 13:4 (2012), 479–490

Citation in format AMSBIB
\Bibitem{Nov12}
\by E.~A.~Novikov
\paper A third-order numerical method for solving nonautonomous additive stiff problems
\jour Num. Meth. Prog.
\yr 2012
\vol 13
\issue 4
\pages 479--490
\mathnet{http://mi.mathnet.ru/vmp54}


Linking options:
  • http://mi.mathnet.ru/eng/vmp54
  • http://mi.mathnet.ru/eng/vmp/v13/i4/p479

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. A. Konev, “Rasshirenie teorii kornevykh derevev Butchera dlya uproschënnogo $(m,k)$-metoda”, Preprinty IPM im. M. V. Keldysha, 2019, 023, 26 pp.  mathnet  crossref  elib
  • Numerical methods and programming
    Number of views:
    This page:71
    Full text:47

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022