RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vychisl. Metody Programm.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vychisl. Metody Programm., 2016, Volume 17, Issue 3, Pages 204–211 (Mi vmp828)  

Solution of a model inverse spectral problem for the Sturm–Liouville operator on a graph

N. F. Valeeva, Yu. V. Martynovab, Ya. T. Sultanaevc

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
b RN-UfaNIPIneft Company
c Bashkir State Pedagogical University, Ufa

Abstract: A model inverse spectral problem for the Sturm–Liouville operator on a geometric graph is studied. This problem consists in finding $N$ parameters of the boundary conditions using its $N$ known eigenvalues. It is shown that the problem under consideration possess the property of a monotonic dependence of its eigenvalues on the parameters of the boundary conditions. This problem is reduced to a multiparameter inverse spectral problem for the operator in a finite-dimensional space. A new algorithm for the numerical solution of this problem is proposed.

Keywords: spectral theory of differential operators, geometric graph, Sturm–Liouville operator, spectral problems.

Full text: PDF file (191 kB)
UDC: 517.4+519.71
Received: 17.05.2016

Citation: N. F. Valeev, Yu. V. Martynova, Ya. T. Sultanaev, “Solution of a model inverse spectral problem for the Sturm–Liouville operator on a graph”, Vychisl. Metody Programm., 17:3 (2016), 204–211

Citation in format AMSBIB
\Bibitem{ValMarSul16}
\by N.~F.~Valeev, Yu.~V.~Martynova, Ya.~T.~Sultanaev
\paper Solution of a model inverse spectral problem for the Sturm--Liouville operator on a graph
\jour Vychisl. Metody Programm.
\yr 2016
\vol 17
\issue 3
\pages 204--211
\mathnet{http://mi.mathnet.ru/vmp828}


Linking options:
  • http://mi.mathnet.ru/eng/vmp828
  • http://mi.mathnet.ru/eng/vmp/v17/i3/p204

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Vychislitel'nye Metody i Programmirovanie
    Number of views:
    This page:128
    Full text:41

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020