Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Num. Meth. Prog., 2019, Volume 20, Issue 3, Pages 254–269 (Mi vmp964)  

Inverse problems of experimental data interpretation in 3D ultrasound tomography

A. V. Goncharskya, V. A. Kubyshkinb, S. Y. Romanova, S. Yu. Seryozhnikova

a Lomonosov Moscow State University, Research Computing Center
b Department of Fundamental Medicine, M.V.Lomonosov Moscow State University

Abstract: The inverse problem of 3D ultrasound tomography is considered in this paper as a nonlinear coefficient inverse problem for a hyperbolic equation. The employed mathematical model accurately describes the effects of ultrasound wave diffraction and absorption in inhomogeneous media. The velocity of acoustic waves inside the test sample is reconstructed as an unknown function of three spatial coordinates. The number of unknowns in the nonlinear inverse problem reaches 50 million. The developed iterative algorithms for solving the inverse problem are designed for GPU clusters. The main result of this study is testing the developed algorithms on experimental data. The experiments were carried out using a 3D ultrasound tomographic setup developed at Lomonosov Moscow State University. Acoustic properties of the test samples were close to those of human soft tissues. The volume of data collected in experiments is up to 3 GB. Experimental results show the efficiency of the proposed algorithms and confirm that the mathematical model is adequate to reality. The proposed algorithms were tested on the GPU partition of Lomonosov-2 supercomputer.

Keywords: ultrasound tomography, inverse problems, medical imaging, GPU cluster.

DOI: https://doi.org/10.26089/NumMet.v20r323

Full text: PDF file (2653 kB)

UDC: 519.6, 517.958:5
Received: 23.05.2019

Citation: A. V. Goncharsky, V. A. Kubyshkin, S. Y. Romanov, S. Yu. Seryozhnikov, “Inverse problems of experimental data interpretation in 3D ultrasound tomography”, Num. Meth. Prog., 20:3 (2019), 254–269

Citation in format AMSBIB
\Bibitem{GonKubRom19}
\by A.~V.~Goncharsky, V.~A.~Kubyshkin, S.~Y.~Romanov, S.~Yu.~Seryozhnikov
\paper Inverse problems of experimental data interpretation in 3D ultrasound tomography
\jour Num. Meth. Prog.
\yr 2019
\vol 20
\issue 3
\pages 254--269
\mathnet{http://mi.mathnet.ru/vmp964}
\crossref{https://doi.org/10.26089/NumMet.v20r323}
\elib{https://elibrary.ru/item.asp?id=39540780}


Linking options:
  • http://mi.mathnet.ru/eng/vmp964
  • http://mi.mathnet.ru/eng/vmp/v20/i3/p254

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Numerical methods and programming
    Number of views:
    This page:65
    Full text:21

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022