RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, Number 3, Pages 46–50 (Mi vmumm153)  

This article is cited in 2 scientific papers (total in 2 papers)

Short notes

The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral

V. A. Kibkalo

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study the topology of the space of the solutions closure for the integrable system on the Lie algebra $\mathrm{so}(4)$ that is an analogue of the Kovalevskaya case. For this purpose Fomenko–Zieschang invariants are calculated in the case of zero area integral, which classify isoenergetic $3$-surfaces and corresponding Liouville foliation on them.

Key words: integrable Hamiltonian system, Fomenko–Zieschang invariants, isoenergetic surface.

Full text: PDF file (603 kB)
References: PDF file   HTML file

English version:
Moscow University Mathematics Bulletin, 2016, 71:3, 119–123

Bibliographic databases:

UDC: 517.938.5
Received: 27.05.2015

Citation: V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3, 46–50; Moscow University Mathematics Bulletin, 71:3 (2016), 119–123

Citation in format AMSBIB
\Bibitem{Kib16}
\by V.~A.~Kibkalo
\paper The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 3
\pages 46--50
\mathnet{http://mi.mathnet.ru/vmumm153}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3637825}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 3
\pages 119--123
\crossref{https://doi.org/10.3103/S0027132216030074}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000393855600007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980347857}


Linking options:
  • http://mi.mathnet.ru/eng/vmumm153
  • http://mi.mathnet.ru/eng/vmumm/y2016/i3/p46

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173  mathnet  crossref  crossref  adsnasa  isi  elib
    2. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow University Mathematics Bulletin, 74:3 (2019), 98–107  mathnet  crossref  mathscinet  zmath  isi
  • Number of views:
    This page:65
    Full text:18
    References:6
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020