RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, Number 3, Pages 29–34 (Mi vmumm404)  

Mathematics

Elementary equivalence of automorphism groups of reduced Abelian $p$-groups

M. A. Roizner

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Unbounded reduced Abelian $p$-groups ($p\geq3$) $A_1$ and $A_2$ are considered. It is proved that if the automorphism groups $\operatorname{Aut}A_1$ and $\operatorname{Aut}A_2$ are elementary equivalent, then the groups $A_1$ and $A_2$ are equivalent in the second order logic bounded with the final rank of the basic subgroups of $A_1$ and $A_2$.

Key words: elementary equivalence, second order equivalence, Abelian $p$-groups, automorphism groups.

Full text: PDF file (246 kB)
References: PDF file   HTML file

English version:
Moscow University Mathematics Bulletin, 2013, 68:3, 156–161

Bibliographic databases:

UDC: 512.541.6 + 510.67
Received: 28.05.2012

Citation: M. A. Roizner, “Elementary equivalence of automorphism groups of reduced Abelian $p$-groups”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 3, 29–34; Moscow University Mathematics Bulletin, 68:3 (2013), 156–161

Citation in format AMSBIB
\Bibitem{Roi13}
\by M.~A.~Roizner
\paper Elementary equivalence of automorphism groups of reduced Abelian $p$-groups
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2013
\issue 3
\pages 29--34
\mathnet{http://mi.mathnet.ru/vmumm404}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3185281}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2013
\vol 68
\issue 3
\pages 156--161
\crossref{https://doi.org/10.3103/S0027132213030042}


Linking options:
  • http://mi.mathnet.ru/eng/vmumm404
  • http://mi.mathnet.ru/eng/vmumm/y2013/i3/p29

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:35
    Full text:8
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020