RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, Number 1, Pages 54–58 (Mi vmumm466)  

This article is cited in 5 scientific papers (total in 5 papers)

Short notes

Integer lattices of the action variables for the generalized Lagrange case

E. O. Kantonistova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In this paper we construct lattices generated by integer-valued isolines of action variables of some integrable Hamiltonian systems with two degrees of freedom (generalized Lagrange case). The monodromy matrices for critical points of this system are calculated.

Key words: Hamiltonian monodromy, action variables, integrable Hamiltonian systems, rigid body.

Funding Agency Grant Number
Russian Foundation for Basic Research 10-01-00748
Ministry of Education and Science of the Russian Federation НШ-3224.2010.1
РНП-2.1.1.3704
02.740.11.5213
14.740.11.0794


Full text: PDF file (335 kB)
References: PDF file   HTML file

English version:
Moscow University Mathematics Bulletin, 2012, 67:1, 36–40

Bibliographic databases:

UDC: 514.8
Received: 27.04.2011

Citation: E. O. Kantonistova, “Integer lattices of the action variables for the generalized Lagrange case”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 1, 54–58; Moscow University Mathematics Bulletin, 67:1 (2012), 36–40

Citation in format AMSBIB
\Bibitem{Kan12}
\by E.~O.~Kantonistova
\paper Integer lattices of the action variables for the generalized Lagrange case
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2012
\issue 1
\pages 54--58
\mathnet{http://mi.mathnet.ru/vmumm466}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2984720}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2012
\vol 67
\issue 1
\pages 36--40
\crossref{https://doi.org/10.3103/S0027132212010068}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870307595}


Linking options:
  • http://mi.mathnet.ru/eng/vmumm466
  • http://mi.mathnet.ru/eng/vmumm/y2012/i1/p54

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. O. Kantonistova, “Integer lattices of action-angle variables for “spherical pendulum” system”, Moscow University Mathematics Bulletin, 69:4 (2014), 135–147  mathnet  crossref  mathscinet
    2. E. O. Kantonistova, “Liouville classification of integrable Hamiltonian systems on surfaces of revolution”, Moscow University Mathematics Bulletin, 70:5 (2015), 220–222  mathnet  crossref  mathscinet  isi
    3. I. V. Sypchenko, D. S. Timonina, “Closed geodesics on piecewise smooth surfaces of revolution with constant curvature”, Sb. Math., 206:5 (2015), 738–769  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. A. T. Fomenko, E. O. Kantonistova, “Topological classification of geodesic flows on revolution 2-surfaces with potential”, Continuous and Distributed Systems II: Theory and Applications, Studies in Systems Decision and Control, 30, ed. V. Sadovnichiy, M. Zgurovsky, Springer Int Publishing Ag, 2015, 11–27  crossref  mathscinet  zmath  isi  scopus
    5. E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Number of views:
    This page:36
    Full text:8
    References:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019