Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, Number 3, Pages 43–49 (Mi vmumm947)  

This article is cited in 7 scientific papers (total in 7 papers)

Mechanics

Integrability of some classes of dynamic systems in terms of elementary functions

M. V. Shamolin


Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation -2311.2005.1
Russian Foundation for Basic Research 05-08-01378-
05-01-00401-


Full text: PDF file (195 kB)

Bibliographic databases:
UDC: 531.01+531.552
Received: 06.02.2006

Citation: M. V. Shamolin, “Integrability of some classes of dynamic systems in terms of elementary functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 3, 43–49

Citation in format AMSBIB
\Bibitem{Sha08}
\by M.~V.~Shamolin
\paper Integrability of some classes of dynamic systems in terms of elementary functions
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2008
\issue 3
\pages 43--49
\mathnet{http://mi.mathnet.ru/vmumm947}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2517009}
\zmath{https://zbmath.org/?q=an:1212.70011}


Linking options:
  • http://mi.mathnet.ru/eng/vmumm947
  • http://mi.mathnet.ru/eng/vmumm/y2008/i3/p43

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. V. Shamolin, “Integrable cases in the dynamics of a multi-dimensional rigid body in a nonconservative field in the presence of a tracking force”, J. Math. Sci., 214:6 (2016), 865–891  mathnet  crossref  mathscinet
    2. M. V. Shamolin, “Sluchai integriruemosti, sootvetstvuyuschie dvizheniyu mayatnika na ploskosti”, Vestn. SamGU. Estestvennonauchn. ser., 2015, no. 10(132), 91–113  mathnet  elib
    3. M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, J. Math. Sci., 230:2 (2018), 185–353  mathnet  crossref  elib
    4. M. V. Shamolin, “Integrable systems on the tangent bundle of a multi-dimensional sphere”, J. Math. Sci. (N. Y.), 234:4 (2018), 548–590  mathnet  crossref
    5. M. V. Shamolin, “Sluchai integriruemosti, sootvetstvuyuschie dvizheniyu mayatnika v trekhmernom prostranstve”, Vestn. SamU. Estestvennonauchn. ser., 2016, no. 3-4, 75–97  mathnet  elib
    6. M. V. Shamolin, “Integrable dynamical systems with dissipation on tangent bundles of 2D and 3D manifolds”, J. Math. Sci. (N. Y.), 244:2 (2020), 335–355  mathnet  crossref  elib
    7. M. V. Shamolin, “Topograficheskie sistemy Puankare i sistemy sravneniya malykh i vysokikh poryadkov”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 50–67  mathnet  crossref
  • Number of views:
    This page:10
    Full text:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021