Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, Number 4, Pages 16–22 (Mi vmumm955)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Representation of solutions to a heat conduction equation with Vladimirovís operator by functional integrals

O. G. Smolyanov, N. N. Shamarov


Funding Agency Grant Number
Russian Foundation for Basic Research 06Ė01Ė00761


Full text: PDF file (248 kB)

Bibliographic databases:
UDC: 517.9
Received: 23.11.2007

Citation: O. G. Smolyanov, N. N. Shamarov, “Representation of solutions to a heat conduction equation with Vladimirovís operator by functional integrals”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 4, 16–22

Citation in format AMSBIB
\Bibitem{SmoSha08}
\by O.~G.~Smolyanov, N.~N.~Shamarov
\paper Representation of solutions to a heat conduction equation with Vladimirovís operator by functional integrals
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2008
\issue 4
\pages 16--22
\mathnet{http://mi.mathnet.ru/vmumm955}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2963717}
\zmath{https://zbmath.org/?q=an:1304.81112}


Linking options:
  • http://mi.mathnet.ru/eng/vmumm955
  • http://mi.mathnet.ru/eng/vmumm/y2008/i4/p16

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. G. Smolyanov, N. N. Shamarov, “Feynman Formulas and Path Integrals for Evolution Equations with the Vladimirov Operator”, Proc. Steklov Inst. Math., 265 (2009), 217–228  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  • Number of views:
    This page:22
    Full text:11

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021