Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2013, Volume 13, Issue 1, Pages 68–75 (Mi vngu131)  

This article is cited in 3 scientific papers (total in 3 papers)

The complexity of isomorphism problem for computable projective planes

N. T. Kogabaevab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: Computable presentations for projective planes are studied. We prove that the isomorphism problem is $\Sigma^1_1$ complete for the following classes of projective planes: pappian projective planes, desarguesian projective planes, arbitrary projective planes.

Keywords: projective plane, pappian projective plane, desarguesian projective plane, computable model, isomorphism problem.

Full text: PDF file (210 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences, 2014, 203:4, 509–515

UDC: 510.53+514.146
Received: 07.05.2012

Citation: N. T. Kogabaev, “The complexity of isomorphism problem for computable projective planes”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013), 68–75; J. Math. Sci., 203:4 (2014), 509–515

Citation in format AMSBIB
\Bibitem{Kog13}
\by N.~T.~Kogabaev
\paper The complexity of isomorphism problem for computable projective planes
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2013
\vol 13
\issue 1
\pages 68--75
\mathnet{http://mi.mathnet.ru/vngu131}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 203
\issue 4
\pages 509--515
\crossref{https://doi.org/10.1007/s10958-014-2154-y}


Linking options:
  • http://mi.mathnet.ru/eng/vngu131
  • http://mi.mathnet.ru/eng/vngu/v13/i1/p68

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. T. Kogabaev, “The embedding problem for computable projective planes”, Algebra and Logic, 56:1 (2017), 75–79  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. K. Voǐtov, “The $\Delta^0_\alpha$-computable enumerations of the classes of projective planes”, Siberian Math. J., 59:2 (2018), 252–263  mathnet  crossref  crossref  isi  elib
    3. N. T. Kogabaev, “Complexity of the isomorphism problem for computable free projective planes of finite rank”, Siberian Math. J., 59:2 (2018), 295–308  mathnet  crossref  crossref  isi  elib
  • Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Number of views:
    This page:228
    Full text:42
    References:28
    First page:18

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022