RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2006, Volume 6, Issue 4, Pages 83–92 (Mi vngu247)  

Algorithmic recognizability of finiteness property of finite-definite systems

E. N. Pavlovsky

Novosibirsk State University

Abstract: The object of this work is a property of finiteness of finite-definite systems, specified with a number of quasi-identities. The purpose of this work is to show in what cases algorithm determining finiteness such systems exists. Using algorithmic methods in universal algebra theory, basing on previous results in adjacent regions (S. I. Adyan, M. O. Rabin, on algorithmic properties of finite-definite groups and semigroups) there was a success in following results: in case of signature consist of one unary operation and some constants — there is an unified algorithm determining finiteness of finite-definite systems, in case of several unary operations or one binary operation with at least one constant — there is no unified algorithm.
Results of this research are able to be applied in treat of correctness of abstract data type description with quasi-identities.

Full text: PDF file (281 kB)
References: PDF file   HTML file
UDC: 510.53, 512.572, 512.53, [510+519.7]:519.68
Received: 23.03.2005

Citation: E. N. Pavlovsky, “Algorithmic recognizability of finiteness property of finite-definite systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:4 (2006), 83–92

Citation in format AMSBIB
\Bibitem{Pav06}
\by E.~N.~Pavlovsky
\paper Algorithmic recognizability of finiteness property of finite-definite systems
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2006
\vol 6
\issue 4
\pages 83--92
\mathnet{http://mi.mathnet.ru/vngu247}


Linking options:
  • http://mi.mathnet.ru/eng/vngu247
  • http://mi.mathnet.ru/eng/vngu/v6/i4/p83

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Number of views:
    This page:98
    Full text:39
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019