RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sib. J. Pure and Appl. Math., 2016, Volume 16, Issue 1, Pages 90–105 (Mi vngu394)  

This article is cited in 1 scientific paper (total in 1 paper)

Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack

N. P. Lazarevab

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Research Institute of Mathematics of North-Eastern Federal University named after M. K. Amosov

Abstract: The equilibrium problems for non-homogeneous plates with a rigid delaminated inclusion are considered. In this case, there is a crack between the rigid inclusion and an elastic part of the plate. Nonpenetration conditions on the crack faces are given in the form of inequalities. We analyze the dependence of solutions and derivatives of the energy functionals on the size of rigid inclusion. The existence of the solution to an optimal control problem is proved. For that problem the cost functional is defined by derivatives of the energy functional with respect to a crack perturbation parameter while the size parameter of rigid inclusion is chosen as the control function.

Keywords: plate, rigid inclusion, nonpenetration condition, variational inequality.

Funding Agency Grant Number
Russian Science Foundation 15-11-10000


DOI: https://doi.org/10.17377/PAM.2016.16.106

Full text: PDF file (255 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences, 2018, 228:4, 409–420

UDC: 539.311
Received: 20.09.2015

Citation: N. P. Lazarev, “Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack”, Sib. J. Pure and Appl. Math., 16:1 (2016), 90–105; J. Math. Sci., 228:4 (2018), 409–420

Citation in format AMSBIB
\Bibitem{Laz16}
\by N.~P.~Lazarev
\paper Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack
\jour Sib. J. Pure and Appl. Math.
\yr 2016
\vol 16
\issue 1
\pages 90--105
\mathnet{http://mi.mathnet.ru/vngu394}
\crossref{https://doi.org/10.17377/PAM.2016.16.106}
\transl
\jour J. Math. Sci.
\yr 2018
\vol 228
\issue 4
\pages 409--420
\crossref{https://doi.org/10.1007/s10958-017-3631-x}


Linking options:
  • http://mi.mathnet.ru/eng/vngu394
  • http://mi.mathnet.ru/eng/vngu/v16/i1/p90

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. V. Fankina, “Optimalnoe upravlenie razmerom zhestkogo sloya konstruktsii”, Sib. zhurn. chist. i prikl. matem., 17:3 (2017), 86–97  mathnet  crossref
  • Сибирский журнал чистой и прикладной математики
    Number of views:
    This page:136
    Full text:26
    References:30
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020