Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, Issue 3(28), Pages 8–16 (Mi vsgtu1010)  

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations

The nonlocal Stefan problem for quasilinear parabolic equation

J. O. Takhirova, R. N. Turaevb

a Nizami Tashkent State Pedagogical University, Tashkent, Uzbekistan
b Institute for Mathematics and Information Technologies of the National Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan

Abstract: In this paper, we deal with free boundary problem with nonlocal boundary condition for quasilinear parabolic equation. For the solutions of the problem apriory estimates of Shauder's type are established. On the base of apriory estimations the existence and uniqueness theorems are proved

Keywords: nonlocal problem, Stefan problem, quasilinear parabolic equation, free boundary, priori estimates, existence and uniqueness theorem, fixed boundary, method of potentials, maximum principle

DOI: https://doi.org/10.14498/vsgtu1010

Full text: PDF file (169 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.956.45
MSC: Primary 35R35; Secondary 35K05, 35R05
Original article submitted 10/VIII/2011
revision submitted – 19/XII/2011

Citation: J. O. Takhirov, R. N. Turaev, “The nonlocal Stefan problem for quasilinear parabolic equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(28) (2012), 8–16

Citation in format AMSBIB
\Bibitem{TakTur12}
\by J.~O.~Takhirov, R.~N.~Turaev
\paper The nonlocal Stefan problem for quasilinear parabolic equation
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2012
\vol 3(28)
\pages 8--16
\mathnet{http://mi.mathnet.ru/vsgtu1010}
\crossref{https://doi.org/10.14498/vsgtu1010}
\zmath{https://zbmath.org/?q=an:06517515}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1010
  • http://mi.mathnet.ru/eng/vsgtu/v128/p8

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Petro M. Martynyuk, “Existence and uniqueness of a solution of the problem with free boundary in the theory of filtration consolidation of soils with regard for the influence of technogenic factors”, J. Math. Sci., 207, no. 1, 59–73  crossref  mathscinet  zmath  scopus; Ukr. Mat. Visn., 11:4 (2014), 524–542  mathscinet  zmath
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:393
    Full text:197
    References:37
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021