RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, Issue 3(28), Pages 30–40 (Mi vsgtu1069)  

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations

Two special functions, generalizing the Mittag–Leffler type function, in solutions of integral and differential equations with Riemann-Liouville and Kober operators

E. N. Ogorodnikov

Samara State Technical University, Samara, Russia

Abstract: Two special functions, concerning Mittag–Leffler type functions, are considered. The first is the modification of generalized Mittag–Leffler type function, introduced by A. A. Kilbas and M. Saigo; the second is the special case of the first one. The solutions of the integral equation with the Kober operator and the generalized power series as the free term are presented. The existence and uniqueness of these solutions are proved. The explicit solutions of the integral equations above are found out in terms of introduced special functions. The correctness of initial value problems for linear homogeneous differential equations with Riemann–Liouville and Kober fractional derivatives is investigated. The solutions of the Cauchy type problems are found out in the special classes of functions with summable fractional derivative via the reduction to the considered above integral equation and also are written in the explicit form in terms of the introduced special functions. The replacement of the Cauchy type initial values to the modified (weight) Cauchy conditions is substantiated. The particular cases of parameters in the differential equations when the Cauchy type problems are not well-posed in sense of the uniqueness of solutions are considered. In these cases the unique solutions of the Cauchy weight problems are existed. It is noted in this paper that the weight Cauchy problems allow to expand the acceptable region of the parameters values in the differential equations to the case when the fractional derivative has the nonsummable singularity in zero.

Keywords: special functions, Mittag–Leffler type function, fractional calculus, Riemann–Liouville integral and differential operators, fractional differential and integral equations, Cauchy type problems

DOI: https://doi.org/10.14498/vsgtu1069

Full text: PDF file (196 kB) (published under the terms of the Creative Commons Attribution 4.0 International License)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 517.968.72:517.589
MSC: Primary 33E12; Secondary 26A33, 34K37
Original article submitted 02/V/2012
revision submitted – 13/VI/2012

Citation: E. N. Ogorodnikov, “Two special functions, generalizing the Mittag–Leffler type function, in solutions of integral and differential equations with Riemann-Liouville and Kober operators”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(28) (2012), 30–40

Citation in format AMSBIB
\Bibitem{Ogo12}
\by E.~N.~Ogorodnikov
\paper Two special functions, generalizing the Mittag--Leffler type function, in solutions of~integral and differential equations with Riemann-Liouville and Kober operators
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2012
\vol 3(28)
\pages 30--40
\mathnet{http://mi.mathnet.ru/vsgtu1069}
\crossref{https://doi.org/10.14498/vsgtu1069}
\zmath{https://zbmath.org/?q=an:06517517}
\elib{http://elibrary.ru/item.asp?id=19092380}


Linking options:
  • http://mi.mathnet.ru/eng/vsgtu1069
  • http://mi.mathnet.ru/eng/vsgtu/v128/p30

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. Yu. Arlanova, E. N. Ogorodnikov, “Ob odnoi nelokalnoi kraevoi zadache s operatorami Nakhusheva i Kobera–Erdeii dlya uravneniya Bitsadze–Lykova”, Materialy IV Mezhdunarodnoi konferentsii «Nelokalnye kraevye zadachi i rodstvennye problemy matematicheskoi biologii, informatiki i fiziki», sbornik tezisov dokladov na konferentsii (Nalchik–Terskol, 04–08 dekabrya 2013 g.), NII PMA KBNTs RAN Mezhdunarodnyi institut matematiki, nano-informatsionnykh tekhnologii AMAN, 2013, 43–46  elib
  • Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Number of views:
    This page:384
    Full text:173
    References:70
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019